Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 351: 324-340, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36155206

RESUMO

The intervention effects of delivery systems on the digestion and adsorption profiles and, thus, the pharmacological effects of bioactive compounds represent an intriguing scientific hypothesis that can be proven with research case studies. Delivery systems with tailor-made structures fabricating from the same building materials offer a new research strategy for deciphering the modulating effects of the digestive fate on the therapeutic efficacy of encapsulated bioactive compounds. Herein, we developed capsaicin-loaded core-shell nanoparticles (Cap NPs), microparticles (Cap MPs) and nano-in-micro particles (Cap NPs in MPs) and investigated their regulatory effects on the digestive fate and colitis-alleviating mechanisms of capsaicin. Results suggested that the small intestine dominant absorption of Cap NPs differed significantly with the colorectal dominated accumulation of Cap MPs and Cap NPs in MPs in terms of the colitis alleviating mechanisms. Cap NPs alleviated colitis mainly through promoting the colonization of short-chain fatty acid-producing bacteria, maintaining intestinal barrier homeostasis and partially inhibiting the activation of the NF-κB pro-inflammatory pathway. Whereas, better dietary intervention effects were achieved from Cap NPs in MPs via promoting the proliferation of mucus-related bacteria and enhanced triggering efficiency on the TRPV1-mucus-microbiotas cyclic cascade. This work confirmed that rationally designed biomaterial-based delivery vehicles can flexibly interfere with the therapeutic mechanisms of encapsulated cargos, representing a new horizon in the field of precise nutrition.


Assuntos
Colite , Nanopartículas , Humanos , Capsaicina/uso terapêutico , Capsaicina/química , Nanopartículas/química , Colite/tratamento farmacológico , Materiais Biocompatíveis
2.
Food Funct ; 11(11): 9503-9513, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32955534

RESUMO

The objective of this study was to investigate the influence of self-assembled microstructure on lipid digestibility in phytosterol (γ-oryzanol and ß-sitosterol) oleogels. Different molar ratios of γ-oryzanol and ß-sitosterol yielded a variety of crystal morphologies; the resulting gels were tested for their lipid emulsification efficiency, release rate of free fatty acids (FFAs) during lipolysis, and their effect on lipase behavior. Results indicated that oleogels were harder to emulsify when compared to oil samples. The emulsification efficiencly was affected by both the gel strength and crystal morphology of the self-assembled structures within phytosterol oleogels. In oil emulsions, intestinal digestion resulted in more extensive lipid droplet coalescence with increased particle size when compared to oleogel emulsions. The FFA release rate suggested that the extent of lipid digestion was correlated to the emulsification efficiency. The interfacial binding of lipase indicated that the amount of lipase adsorption was positively correlated to the interface area created during the emulsification process. Finally, isothermal titration calorimetry results indicated that self-assembled structures within these oleogels physically obstructed the interaction between lipase and lipid. Ultimately, this led to lower reaction rate during gastrointestinal digestion. Collectively, these results may have important implications in designing oleogel systems with controlled lipid digestibility as well as controlling the bioavailability of delivered lipid-soluble bioactive compounds.


Assuntos
Lipase/efeitos dos fármacos , Fenilpropionatos/farmacologia , Fitosteróis/farmacologia , Sitosteroides/farmacologia , Digestão , Emulsões , Humanos , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Fenilpropionatos/química , Fitosteróis/química , Sitosteroides/química , Relação Estrutura-Atividade
3.
Food Funct ; 11(3): 2048-2057, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32159192

RESUMO

A mixture of ceramide (CER) and lecithin (LEC) at specific ratios was capable of forming oleogels in sunflower oil triggered by adding a trace amount of water. It was noted that the addition of water at different temperatures (TW) resulted in different gelation behaviors and microstructures. To better illuminate the assembly mechanism at different TW, samples with water added at different TW (20 °C, 45 °C, 70 °C and 95 °C) were prepared. The viscoelastic properties, microstructures, and the crystal packing of these samples were investigated. It was observed that all samples prepared at TW of 20 °C and 95 °C formed gels, while most samples prepared at TW of 45 °C and 70 °C were too weak to form gels. Gels prepared at 95 °C were stronger but more fragile in texture compared to gels produced at 20 °C. The crystal morphology of gels drastically changed with TW. Spindle-shaped crystals were observed in gels prepared at low TW (20 °C), while gels prepared at high TW (95 °C) exhibited a network with packed oil droplets stabilized by lamellar shells together with fibrillar crystals in the bulk phase. X-ray diffractograms showed a different reflection peak (d-spacing of 14.5 Å) in gel prepared at 20 °C, compared to the d-spacing in oleogels with a single gelator (13.14 Å and 15.33 Å, respectively, for CER and LEC). Gel prepared at 95 °C showed two long-spacing characteristic peaks, which correspond to the characteristic peaks of CER gel (∼13 Å) and LEC gel (∼12 Å). Fourier transform infrared spectroscopy results indicated that the different gelation behaviors at different TW were mainly caused by vibrational changes in the amide bond of CER. Our hypothesized assembly mechanism can be concluded as: increasing TW resulted in the conversion of CER and LEC crystallization from co-assembly (TW = 20 °C) to self-sorting by individual gelators (TW = 95 °C). In this study, novel water-induced oleogels were produced by manipulating TW, and such information further assists the rational design of lipid-based healthy fat products.


Assuntos
Ceramidas/química , Lecitinas/química , Óleo de Girassol/química , Água/química , Humanos , Compostos Orgânicos/química , Reologia , Temperatura , Difração de Raios X
4.
Soft Matter ; 15(45): 9205-9214, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31710326

RESUMO

Peptides are a promising class of gelators, due to their structural simplicity, biocompatibility and versatility. Peptides were synthesized based on four amino acids: leucine, phenylalanine, tyrosine and tryptophan. These peptide gelators, with systematic structural variances in side chain structure and chain length, were investigated using Hansen solubility parameters to clarify molecular features that promote gelation in a wide array of solvents. It is of utmost importance to combine both changes to structural motifs and solvent in simultaneous studies to obtain a global perspective of molecular gelation. It was found that cyclization of symmetric dipeptides, into 2,5-diketopiperazines, drastically altered the gelation ability of the dipeptides. C-l-LL and C-l-YY, which are among the smallest peptide LMOGs reported to date, are robust gelators with a large radius of gelation (13.44 MPa1/2 and 13.90 MPa1/2, respectively), and even outperformed l-FF (5.61 MPa1/2). Interestingly, both linear dipeptides (l-FF and l-LL) gelled similar solvents, yet when cyclized only cyclo-dityrosine was a robust gelator, while cyclo-diphenylalanine was not. Changes in the side chains drastically affected the crystal morphology of the resultant gels. Symmetric cyclo dipeptides of leucine and tyrosine were capable of forming extremely high aspect ratio fibers in numerous solvents, which represent new molecular motifs capable of driving self-assembly.


Assuntos
Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Ciclização , Géis , Solubilidade
5.
Oxid Med Cell Longev ; 2019: 5958043, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341531

RESUMO

Carnosol, a phenolic diterpene, is one of the main constituents of Rosmarinus. It is known to possess a range of bioactivities, including antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Nevertheless, the antiaging effects of carnosol have received little attention. This study first indicated that carnosol increased the healthspan of Caenorhabditis elegans (C. elegans). First, compared with the control condition, carnosol treatment effectively decreased ROS accumulation under normal or oxidative stress condition, significantly increased several key antioxidant enzyme activities, and significantly decreased MDA content. Second, carnosol effectively prolonged lifespan under normal and stress conditions and slowed aging-related declines, including mobility, age pigmentation, and neurodegenerative disease, but had no effect on fertility and fat deposition. Finally, carnosol-mediated longevity required the upregulated expression of sod-3, sod-5, hsf-1, hsp-16.1, and hsp-16.2 and was dependent on the hsf-1 gene. Increased DAF-16 translocation was observed, but daf-16 was independent of the effects on lifespan induced by carnosol. These results suggested that carnosol might serve as a good source of natural antioxidants, and in particular, carnosol could be explored as a potential dietary supplement to slow aging.


Assuntos
Abietanos/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Rosmarinus/química , Animais , Caenorhabditis elegans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA