Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705108

RESUMO

RN-9893, a TRPV4 antagonist identified by Renovis Inc., showcased notable inhibition of TRPV4 channels. This research involved synthesizing and evaluating three series of RN-9893 analogues for their TRPV4 inhibitory efficacy. Notably, compounds 1b and 1f displayed a 2.9 to 4.5-fold increase in inhibitory potency against TRPV4 (IC50 = 0.71 ± 0.21 µM and 0.46 ± 0.08 µM, respectively) in vitro, in comparison to RN-9893 (IC50 = 2.07 ± 0.90 µM). Both compounds also significantly outperformed RN-9893 in TRPV4 current inhibition rates (87.6 % and 83.2 % at 10 µM, against RN-9893's 49.4 %). For the first time, these RN-9893 analogues were profiled in an in vivo mouse model, where intraperitoneal injections of 1b or 1f at 10 mg/kg notably mitigated symptoms of acute lung injury induced by lipopolysaccharide (LPS). These outcomes indicate that compounds 1b and 1f are promising candidates for acute lung injury treatment.


Assuntos
Lesão Pulmonar Aguda , Benzenossulfonamidas , Sulfonamidas , Canais de Cátion TRPV , Relação Estrutura-Atividade , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Animais , Camundongos , Humanos , Estrutura Molecular , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL
2.
Cells ; 12(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174704

RESUMO

Gadopentetic acid and gadodiamide are paramagnetic gadolinium-based contrast agents (GBCAs) that are routinely used for dynamic contrast-enhanced magnetic resonance imaging (MRI) to monitor disease progression in cancer patients. However, growing evidence indicates that repeated administration of GBCAs may lead to gadolinium (III) cation accumulation in the cortical bone tissue, skin, basal ganglia, and cerebellum, potentially leading to a subsequent slow long-term discharge of Gd3+. Gd3+ is a known activator of the TRPC5 channel that is implicated in breast cancer's resistance to chemotherapy. Herein, we found that gadopentetic acid (Gd-DTPA, 1 mM) potentiated the inward and outward currents through TRPC5 channels, which were exogenously expressed in HEK293 cells. Gd-DTPA (1 mM) also activated the Gd3+-sensitive R593A mutant of TRPC5, which exhibits a reduced sensitivity to GPCR-Gq/11-PLC dependent gating. Conversely, Gd-DTPA had no effect on TRPC5-E543Q, a Gd3+ insensitive TRPC5 mutant. Long-term treatment (28 days) of human breast cancer cells (MCF-7 and SK-BR-3) and adriamycin-resistant MCF-7 cells (MCF-7/ADM) with Gd-DTPA (1 mM) or gadodiamide (GDD, 1 mM) did not affect the IC50 values of ADM. However, treatment with Gd-DTPA or GDD significantly increased TRPC5 expression and decreased the accumulation of ADM in the nuclei of MCF-7 and SK-BR-3 cells, promoting the survival of these two breast cancer cells in the presence of ADM. The antagonist of TRPC5, AC1903 (1 µM), increased ADM nuclear accumulation induced by Gd-DTPA-treatment. These data indicate that prolonged GBCA treatment may lead to increased breast cancer cell survival owing to the upregulation of TRPC5 expression and the increased ADM resistance. We propose that while focusing on providing medical care of the best personalized quality in the clinic, excessive administration of GBCAs should be avoided in patients with metastatic breast cancer to reduce the risk of promoting breast cancer cell drug resistance.


Assuntos
Neoplasias da Mama , Compostos Organometálicos , Humanos , Feminino , Gadolínio DTPA/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Gadolínio/farmacologia , Gadolínio/metabolismo , Células HEK293 , Meios de Contraste/farmacologia , Canais de Cátion TRPC/metabolismo
3.
Brain Sci ; 12(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35203995

RESUMO

Mild traumatic brain injury (mTBI) without skull fracturing is the most common occurrence of all TBIs and is considered as a serious public health concern. Animal models of mTBI are essential to investigation of TBI and its effects. In the current study, we developed and characterized a reproducible mouse model of mild TBI, meanwhile, the effects of this mTBI model, as well as repetitive mTBIs (rmTBIs), on the endothelial function of mouse aortas were also studied. In variety of closed-head models of mTBI, impact velocity, weight, and dwell time are the main parameters that affect the severities of injury. Here, we used a device, converting parameters of velocity, tip weight, and dwell time into impact force, to develop a mouse model of close-head mTBI. Mice were subjected to a mild TBI induced by the impact forces of 500, 600, 700 and 800 kdyn, respectively. Later, brain injuries were assessed histologically and molecularly. Systemic and brain inflammation were measured by plasma cytokine assay and glial fibrillary acidic protein (GFAP) staining. The composite neurobehavioral test revealed significant acute functional deficits in mice after mTBI, corresponding to the degree of injury. Mice brain undergoing mTBI had significant elevated GFAP staining. Plasma cytokines interleukin-1ß (IL-1ß) and superoxide dismutase (SOD) were significantly increased within 2 h after mTBI. Taken together, these data suggest that the mTBI mouse model introduce within our study exhibits good repeatability and comparable pathological characters. Moreover, we used this mTBI mouse model to determine the effect of single or rmTBIs on systemic vasoconstriction and relaxation. The isometric-tension results indicate that rmTBIs induce a pronounced and long-lasting endothelial dysfunction in mouse aorta.

4.
Opt Lett ; 38(12): 2035-7, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938968

RESUMO

We present a method of achieving a wide-angle, lightweight, optical see-through, distortion-free head-mounted display (HMD) by using two similar ellipsoids. An HMD that achieves a single channel field-of-view (FOV) of 120°×120° with a 6 mm eye box and a total binocular FOV of 160°×120° with an 80° field overlap is designed as an example. This method can solve the complex tiling problem and the distortion problem of other catadioptric structures. This structure is used to offset distortion and correct aberrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...