Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1961-1971, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37997375

RESUMO

Psychological stress promotes nonalcoholic steatohepatitis (NASH) development. However, the pathogenesis of psychological stress-induced NASH remains unclear. This study aims to explore the underlying mechanism of restraint stress-induced NASH, which mimics psychological stress, and to discover potential NASH candidates. Methionine choline deficient diet- and high fat diet-induced hepatosteatotic mice are subjected to restraint stress to induce NASH. The mice are administrated with Xiaoyaosan granules, NOD-like receptor family pyrin domain containing 3 (NLRP3) inhibitors, farnesoid X receptor (FXR) agonists, or macrophage scavengers. Pathological changes and NLRP3 signaling in the liver are determined. These results demonstrate that restraint stress promotes hepatic inflammation and fibrosis in hepatosteatotic mice. Restraint stress increases the expressions of NLRP3, Caspase-1, Gasdermin D, interleukin-1ß, cholesterol 7α-hydroxylase, and sterol 12α-hydroxylase and decreases the expression of FXR in NASH mice. Xiaoyaosan granules reverse hepatic inflammation and fibrosis and target FXR and NLRP3 signals. In addition, inhibition of NLRP3 reduces the NLRP3 inflammasome and liver damage in mice with restraint stress-induced NASH. Elimination of macrophages and activation of FXR also attenuate inflammation and fibrosis by inhibiting NLRP3 signaling. However, NLRP3 inhibitors or macrophage scavengers fail to affect the expression of FXR. In conclusion, restraint stress promotes NASH-related inflammation and fibrosis by regulating the FXR/NLRP3 signaling pathway. Xiaoyaosan granules, NLRP3 inhibitors, FXR agonists, and macrophage scavengers are potential candidates for the treatment of psychological stress-related NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fígado/metabolismo , Inflamassomos/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Fibrose , Camundongos Endogâmicos C57BL
2.
Mol Immunol ; 161: 33-43, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481827

RESUMO

Psychological stress triggers onset and development of vitiligo in humans. However, the mechanism of psychological stress on vitiligo remains unclear. The study aims to investigate whether psychological stress promotes vitiligo and explore the underlying mechanism. A depigmentation mouse model induced by applying a skin-bleaching reagent monobenzone to dorsal skin and an in vitro HaCaT keratinocyte death model induced by monobenzone were employed to explore the effect of restraint stress, which mimics psychological stress, on depigmentation. The results indicated that restraint stress promoted vitiligo-related depigmentation, vacuolisation, spongiosis, CD8+ T lymphocyte infiltration, and loss of melanocytes in the skin. Restraint stress activated cutaneous NLR family containing pyrin domain protein 3 (NLRP3) inflammasome. In addition, restraint stress aggravated anxiety-like behaviors and increased levels of macrophage migration inhibitory factor (MIF) and corticosterone in the circulation, accompanied with decreasing the expression of cutaneous 8-oxoguanine DNA glycosylase (OGG1) in depigmentation mice. In vitro experiments demonstrated that activation of glucocorticoid receptor (GR) by cortisol upregulated NLRP3 expression dependent on MIF, and directly decreased the transcription of OGG1. Blockade of MIF reversed the NLRP3 signal in restraint stress-induced depigmentation mice. In conclusion, restraint stress promotes vitiligo-related depigmentation in mice via the activation of GR/MIF signaling pathway. The findings provide a theoretical basis for prevention and treatments of vitiligo with therapies of targeting GR, MIF, and OGG1.


Assuntos
Hipopigmentação , Fatores Inibidores da Migração de Macrófagos , Vitiligo , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Glucocorticoides , Transdução de Sinais , Vitiligo/induzido quimicamente , Vitiligo/metabolismo
3.
Photodermatol Photoimmunol Photomed ; 39(5): 478-486, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37147870

RESUMO

PURPOSE: Ultraviolet-induced skin photoaging was involved in DNA oxidative damage. Specnuezhenide, one of the secoiridoids extracted from Ligustri Lucidi Fructus, possesses antioxidant and anti-inflammatory effects. Whether specnuezhenide ameliorates skin photoaging remains unclear. This study aimed to investigate the effect of specnuezhenide on skin photoaging induced by ultraviolet and explore the underlying mechanism. METHODS: Mice were employed to treat with ultraviolet to induce skin photoaging, then administrated 10 and 20 mg/kg of specnuezhenide. Histological analysis, protein expression, network pharmacology, and autodock analysis were conducted. RESULTS: Specnuezhenide ameliorated ultraviolet-induced skin photoaging in mice via the increase in collagen contents, and decrease in epidermal thickness, malondialdehyde content, and ß-galactosidase expression in the skin. Specnuezhenide reduced cutaneous apoptosis and inflammation in mice with skin photoaging. In addition, network pharmacology data indicated that specnuezhenide possessed potential targets on the NOD-like receptor signaling pathway. Validation experiment found that specnuezhenide inhibited the expression of NOD-like receptor family pyrin domain-containing 3, gasdermin D-C1, and Caspase 1. Furthermore, the expression of 8-Oxoguanine DNA glycosylase (OGG1), sirtuin 3 (SIRT3), and superoxide dismutase 2 was increased in specnuezhenide-treated mice with photoaging. CONCLUSION: Specnuezhenide protected against ultraviolet-induced skin photoaging in mice via a probable activation of SIRT3/OGG1 signal.


Assuntos
Sirtuína 3 , Envelhecimento da Pele , Camundongos , Animais , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Pele/patologia , Raios Ultravioleta/efeitos adversos
4.
J Food Biochem ; 46(12): e14428, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125796

RESUMO

Biochanin A (Bio-A), an isoflavone abundant in chickpeas, possesses hypoglycemic, hypolipidemic, and anti-inflammatory effects. However, whether Bio-A has antihepatosteatosis effect remains unclear. This study aimed to evaluate the antihepatosteatosis effect of Bio-A on oleate (OA)-treated hepatocytes, and explore the underlying mechanism. When incubated with OA for 24 h, HepG2 cells were treated with various concentrations of Bio-A for 24 h to obtain an optimal antihepatosteatosis dose. HepG2 cells were treated with the AMP-activated protein kinase (AMPK) inhibitor Compound C, or the sirtuin-3 (SIRT3) inhibitor 3-TYP, and incubated with 50 µM Bio-A. The results indicated that 12.6% of lipid content, particularly 11.0% of triglyceride content, and the expression of adipocyte differentiation-related protein were significantly decreased in Bio-A-treated hepatosteatosis cells, followed by an increase in the expression of Beclin 1, phosphorylation of Unc-51-like kinase 1 (ULK-1), the microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I ratio, and a decrease in expression of p62. The results indicated that Bio-A upregulated autophagosome formation and autophagy flux. In addition, Bio-A increased SIRT3 expression and AMPK phosphorylation in OA-treated HepG2 cells. Blockade of AMPK and SIRT3 blocked the antihepatosteatosis effect and ULK-1 activation by Bio-A. AMPK inhibition did not eliminate the activation of SIRT3 by Bio-A. AutoDock analysis demonstrated that interaction might exist between Bio-A and SIRT3. In conclusion, Bio-A reduced fat accumulation in OA-treated HepG2 cells by activating SIRT3/AMPK/ULK-1-mediated autophagy. The findings provide a theoretical basis for the effect of Bio-A on hepatic steatosis-related diseases. PRACTICAL APPLICATIONS: This study highlights the antihepatosteatosis effects of biochanin A (Bio-A) on oleate (OA)-treated hepatocytes. Bio-A, one of the isoflavones in Cicer arietinum Linn., possesses multiple bioactivities such as antiobesity, anti-inflammation, and hypoglycemic and hypolipidemic effects. This study provides a new application of Bio-A to treat hepatic steatosis, and revealed the underlying mechanism of Bio-A involved in the activation of the SIRT3/AMPK/ULK-1-mediated autophagy. The findings provide a theoretical basis for the application of Bio-A to hepatic steatosis-related diseases.


Assuntos
Fígado Gorduroso , Sirtuína 3 , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/farmacologia , Células Hep G2 , Ácido Oleico/farmacologia , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia
5.
Chem Biol Interact ; 364: 110051, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872049

RESUMO

Formulations against liver fibrosis (LF) mitigate the progression of hepatitis to cirrhosis. However, notable toxicity of the currently available anti-LF drugs limits their long-term use. In the study, we aimed to investigate the anti-LF effects of theacrine, a purine alkaloid without obvious toxicity, on high-fat diet-, alcohol-, and carbon tetrachloride-induced LF in rats. The results indicated that 10 and 20 mg/kg of theacrine ameliorated hepatic fibrosis, steatosis, and inflammation in LF rats. Mechanistically, theacrine reduced hepatic stellate cell (HSC)-related α-smooth muscle actin expression, and decreased cholesterol accumulation, followed by decreased expression of transforming growth factor-ß1, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α. In addition, theacrine upregulated the phosphorylation of AMP-activated protein kinase, accompanied by decreased expression of ß-catenin and stearoyl-CoA desaturase 1, and increased the expression of sirtuin 3 (SIRT3). Further investigation revealed that the theacrine-mediated decrease in cholesterol was independent of cholesterol synthesis or low-density lipoprotein (LDL) uptake in hyperlipidemia mice. However, theacrine activated farnesoid X receptor (FXR), a ß-catenin conjugated protein, accompanied with decreased expression of cholesterol 7α-hydroxylase and sterol 12α-hydroxylase. In conclusion, theacrine alleviated experimental LF in rats by lowering cholesterol storage and decreasing cholesterol-related HSC activation. A plausible mechanism of theacrine on cholesterol metabolism may involve activation of SIRT3-FXR signaling pathway followed by decreased intestinal cholesterol absorption.


Assuntos
Sirtuína 3 , Animais , Colesterol/metabolismo , Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos , Ratos , Transdução de Sinais , Sirtuína 3/metabolismo , Ácido Úrico/análogos & derivados , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...