Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(17): e2400094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400587

RESUMO

Numerous organic electrolytes additives have been reported to improve Zn anode performance in aqueous Zn metal batteries (AZMBs). However, the modification mechanism needs to be further revealed in consideration of different environments for electrolytes and electrodes during the charge-discharge process. Herein, sulfur-containing zwitter-molecule (methionine, Met) is used as an additive for ZnSO4 electrolytes. In electrolytes, Met reduces the H2O coordination number and facilitates the desolvation process by virtue of functional groups (─COOH, ─NH2, C─S─C), accelerating Zn2+ transference kinetics and decreasing the amount of active water. On electrodes, Met prefers to adsorb on Zn (002) plane and further transforms into a zincophilic protective layer containing C─SOx─C through an in situ electrochemical oxidization, suppressing H2 evolution/corrosion reactions and guiding dendrite-free Zn deposition. By using Met-containing ZnSO4 electrolytes, the Zn//Zn cells show superior cycling performance under 30 mA cm-2/30 mA h cm-2. Moreover, the full cells Zn//NH4V4O10 full cells using the modified electrolytes exhibit good performance at temperatures from -8 to 60 °C. Notably, a high energy density of 105.30 W h kg-1 can be delivered using a low N/P ratio of 1.2, showing a promising prospect of Met electrolytes additives for practical use.

2.
Mar Pollut Bull ; 192: 115089, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267869

RESUMO

Accurate predictions of coastal ocean chlorophyll-a (Chl-a) concentrations are necessary for dynamic water quality monitoring, with eutrophication as a critical factor. Prior studies that used the driven-data method have typically overlooked the relationship between Chl-a and marine particulate carbon. To address this gap, marine particulate carbon was incorporated into machine learning (ML) and deep learning (DL) models to estimate Chl-a concentrations in the Yang Jiang coastal ocean of China. Incorporating particulate organic carbon (POC) and particulate inorganic carbon (PIC) as predictors can lead to successful Chl-a estimation. The Gaussian process regression (GPR) model significantly outperforming the DL model in terms of stability and robustness. A lower POC/Chl-a ratio was observed in coastal areas, in contrast to the higher ratios detected in the southern regions of the study area. This study highlights the efficacy of the GPR model for estimating Chl-a and the importance of considering POC in modeling Chl-a concentrations.


Assuntos
Carbono , Monitoramento Ambiental , Clorofila A , Carbono/análise , Clorofila/análise , Poeira , Aprendizado de Máquina
3.
Adv Mater ; 34(49): e2206239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36255143

RESUMO

Rechargeable aqueous zinc-ion batteries are of great potential as one of the next-generation energy-storage devices due to their low cost and high safety. However, the development of long-term stable electrodes and electrolytes still suffers from great challenges. Herein, a self-separation strategy is developed for an interface layer design to optimize both electrodes and electrolytes simultaneously. Specifically, the coating with an organometallics (sodium tricyanomethanide) evolves into an electrically responsive shield layer composed of nitrogen, carbon-enriched polymer network, and sodium ions, which not only modulates the zinc-ion migration pathways to inhibit interface side reactions but also adsorbs onto Zn perturbations to induce planar zinc deposition. Additionally, the separated ions from the coating can diffuse to the electrolyte to affect the Zn2+ solvation structure and maintain the cathode structural stability by forming a stable cathode-electrolyte interface and sodium ions' equilibrium, confirmed by in situ spectroscopy and electrochemical analysis. Due to these unique advantages, the symmetric zinc batteries exhibit an extralong cycling lifespan of 3000 h and rate performance at 20 mA cm-2 at wide temperatures. The efficiency of the self-separation strategy is further demonstrated in practical full batteries with an ultralong lifespan over 10 000 cycles from -35 to 60 °C.

4.
Adv Mater ; 34(32): e2203153, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35635220

RESUMO

Aqueous zinc ion batteries (ZIBs) have been extensively investigated as a next-generation energy storage system due to their high safety and low cost. However, the critical issues of irregular dendrite growth and intricate side reactions severely restrict the further industrialization of ZIBs. Here, a strategy to fabricate a semi-immobilized ionic liquid interface layer is proposed to protect the Zn anode over a wide temperature range from -35 to 60 °C. The immobilized SiO2 @cation can form high conjugate racks that can regulate the Zn2+ concentration gradient and self-polarizing electric field to guarantee uniform nucleation and planar deposition; the free anions of the ILs can weaken the hydrogen bonds of the water to promote rapid Zn2+ desolvation and accelerate ion-transport kinetics simultaneously. Because of these unique advantages, the cycling performance of the symmetric Zn batteries is greatly enhanced, evidenced by a cycling life of 1800 h at 20 mA cm-2 , and a cycle lifespan of 2000 h under a wide temperature window from -35 to 60 °C. The efficiency of this semi-immobilizing strategy is well demonstrated in various full cells including pouch cells, showing high performance at large current (20 A g-1 ) and wide temperatures with extra-long cycles up to 80 000 cycles.

5.
Adv Mater ; 34(4): e2106409, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34806240

RESUMO

With the growing demands for large-scale energy storage, Zn-ion batteries (ZIBs) with distinct advantages, including resource abundance, low-cost, high-safety, and acceptable energy density, are considered as potential substitutes for Li-ion batteries. Although numerous efforts are devoted to design and develop high performance cathodes and aqueous electrolytes for ZIBs, many challenges, such as hydrogen evolution reaction, water evaporation, and liquid leakage, have greatly hindered the development of aqueous ZIBs. Developing "beyond aqueous" electrolytes can be able to avoid these issues due to the absence of water, which are beneficial for the achieving of highly efficient ZIBs. In this review, the recent development of the "beyond aqueous" electrolytes, including conventional organic electrolytes, ionic liquid, all-solid-state, quasi-solid-state electrolytes, and deep eutectic electrolytes are presented. The critical issues and the corresponding strategies of the designing of "beyond aqueous" electrolytes for ZIBs are also summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA