Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(2): e0011987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381766

RESUMO

BACKGROUND: We examined the impact of the Clonorchis sinensis (C. sinensis) infection on the survival outcomes of spontaneous rupture Hepatocellular Carcinoma (srHCC) patients undergoing hepatectomy. METHODS: Between May 2013 and December 2021, 157 consecutive srHCC patients who underwent hepatectomy were divided into an no C. sinensis group (n = 126) and C. sinensis group (n = 31). To adjust for differences in preoperative characteristics an inverse probability of treatment weighting (IPTW) analysis was done, using propensity scores. Overall survival (OS) and recurrence-free survival (RFS) were compared before and after IPTW. Multivariate Cox regression analysis was performed to determine whether the C. sinensis infection was an independent prognostic factor after IPTW. RESULTS: In original cohort, the no C. sinensis group did not show a survival advantage over the C. sinensis group. After IPTW adjustment, the median OS for the C. sinensis group was 9 months, compared to 29 months for the no C. sinensis group. C. sinensis group have worse OS than no C. sinensis group (p = 0.024), while it did not differ in RFS(p = 0.065). The multivariate Cox regression analysis showed that C. sinensis infection and lower age were associated with worse OS. CONCLUSIONS: The C. sinensis infection has an adverse impact on os in srHCC patients who underwent hepatectomy.


Assuntos
Carcinoma Hepatocelular , Clonorquíase , Clonorchis sinensis , Neoplasias Hepáticas , Humanos , Animais , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Ruptura Espontânea/cirurgia , Ruptura Espontânea/complicações , Prognóstico , Pontuação de Propensão , Clonorquíase/complicações , Clonorquíase/cirurgia , Estudos Retrospectivos
2.
Microb Pathog ; 186: 106503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142905

RESUMO

Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.


Assuntos
Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteômica/métodos , Proteínas/metabolismo , Transdução de Sinais , Lipídeos
3.
Entropy (Basel) ; 24(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36141086

RESUMO

The energy loss of the vertical axial flow pump device increases due to the unstable internal flow, which reduces the efficiency of the pump device and increases its energy consumption of the pump device. The research results of the flow loss characteristics of the total internal conduit are still unclear. Therefore, to show the internal energy loss mechanism of the axial flow pump, this paper used the entropy production method to calculate the energy loss of the total conduit of the pump device to clarify the internal energy loss mechanism of the pump device. The results show that the energy loss of the impeller is the largest under various flow conditions, accounting for more than 40% of the total energy loss of the pump device. The variation trend of the volume average entropy production and the energy loss is similar under various flow coefficients (KQ). The volume average entropy production rate (EPR) and the energy loss decrease first and then increase with the increase of flow, the minimum volume average entropy production is 378,000 W/m3 at KQ = 0.52, and the area average EPR of the impeller increases gradually with the increase of flow. Under various flow coefficient KQ, the energy loss of campaniform inlet conduit is the smallest, accounting for less than 1% of the total energy loss. Its maximum value is 63.58 W. The energy loss of the guide vane and elbow increases with the increase of flow coefficient KQ, and the maximum ratio of energy loss to the total energy loss of the pump device is 29% and 21%, respectively, at small flow condition KQ = 0.38. The energy loss of straight outlet conduit reduces first and then increases with the increase of flow coefficient KQ. When flow coefficient KQ = 0.62, it accounts for 27% of the total energy loss of the pump device, but its area average entropy production rate (EPR) and volume average entropy production rate (EPR) are small. The main entropy production loss in the pump device is dominated by entropy production by turbulent dissipation (EPTD), and the proportion of entropy production by direct dissipation (EPDD) is the smallest.

4.
Front Bioeng Biotechnol ; 10: 910475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757802

RESUMO

The pore strategy is one of the important factors affecting the biomedical porous scaffold at the same porosity. In this work, porous scaffolds were designed based on the triply periodic minimal surface (TPMS) structure under the same porosity and different pore strategies (pore size and size continuous gradient distribution) and were successfully prepared using a novel Ni46.5Ti44.5Nb9 alloy and selective laser melting (SLM) technology. After that, the effects of the pore strategies on the microstructure, mechanical properties, and permeability of porous scaffolds were systematically investigated. The results showed that the Ni46.5Ti44.5Nb9 scaffolds have a low elastic modulus (0.80-1.05 GPa) and a high ductility (15.3-19.1%) compared with previous works. The pore size has little effect on their mechanical properties, but increasing the pore size significantly improves the permeability due to the decrease in specific surfaces. The continuous gradient distribution of the pore size changes the material distribution of the scaffold, and the smaller porosity structure has a better load-bearing capacity and contributes primarily to the high compression strength. The local high porosity structure bears more fluid flow, which can improve the permeability of the overall scaffold. This work can provide theoretical guidance for the design of porous scaffolds.

5.
Mol Pharm ; 18(11): 4140-4147, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657437

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease with poor prognosis. Evidence has shown that vimentin is a key regulator of lung fibrogenesis. 99mTc-labeled N-acetylglucosamine-polyethyleneimine (NAG-PEI), a vimentin-targeting radiotracer, was used for the early diagnosis of IPF, and NAG-PEI was also used as a therapeutic small interfering RNA (siRNA) delivery vector for the treatment of IPF in this study. Single-photon emission-computed tomography (SPECT) imaging of bleomycin (BM)- and silica-induced IPF mice with 99mTc-labeled NAG-PEI was performed to visualize pulmonary fibrosis and monitor the treatment efficiency of siRNA-loaded NAG-PEI, lipopolysaccharide (LPS, a tolerogenic adjuvant), or zymosan (ZYM, an immunostimulant). The lung uptakes of 99mTc-NAG-PEI in the BM- and silica-induced IPF mice were clearly and directly correlated with IPF progression. The lung uptake of 99mTc-NAG-PEI in the NAG-PEI/TGF-ß1-siRNA treatment group or LPS treatment group was evidently lower than that in the control group, while the lung uptake of 99mTc-NAG-PEI was significantly higher in the ZYM treatment group compared to that in the control group. These results demonstrate that NAG-PEI is a potent MicroSPECT imaging-guided theranostic platform for IPF diagnosis and therapy.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Vimentina/antagonistas & inibidores , Acetilglucosamina/administração & dosagem , Acetilglucosamina/química , Animais , Biodiversidade , Bleomicina/administração & dosagem , Bleomicina/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/patologia , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Polietilenoimina/administração & dosagem , Polietilenoimina/química , RNA Interferente Pequeno/genética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Tecnécio , Tomografia Computadorizada de Emissão de Fóton Único , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo
6.
Math Biosci Eng ; 18(5): 6066-6078, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34517523

RESUMO

The approach of graph-based diffusion tensor imaging (DTI) networks has been used to explore the complicated structural connectivity of brain aging. In this study, the changes of DTI networks of brain aging were quantitatively and qualitatively investigated by comparing the characteristics of brain network. A cohort of 60 volunteers was enrolled and equally divided into young adults (YA) and older adults (OA) groups. The network characteristics of critical nodes, path length (Lp), clustering coefficient (Cp), global efficiency (Eglobal), local efficiency (Elocal), strength (Sp), and small world attribute (σ) were employed to evaluate the DTI networks at the levels of whole brain, bilateral hemispheres and critical brain regions. The correlations between each network characteristic and age were predicted, respectively. Our findings suggested that the DTI networks produced significant changes in network configurations at the critical nodes and node edges for the YA and OA groups. The analysis of whole brains network revealed that Lp, Cp increased (p < 0.05, positive correlation), Eglobal, Elocal, Sp decreased (p < 0.05, negative correlation), and σ unchanged (p ≥ 0.05, non-correlation) between the YA and OA groups. The analyses of bilateral hemispheres and brain regions showed similar results as that of the whole-brain analysis. Therefore the proposed scheme of DTI networks could be used to evaluate the WM changes of brain aging, and the network characteristics of critical nodes exhibited valuable indications for WM degeneration.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Humanos , Adulto Jovem
7.
Front Bioeng Biotechnol ; 9: 641130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842445

RESUMO

Design an implant similar to the human bone is one of the critical problems in bone tissue engineering. Metal porous scaffolds have good prospects in bone tissue replacement due to their matching elastic modulus, better strength, and biocompatibility. However, traditional processing methods are challenging to fabricate scaffolds with a porous structure, limiting the development of porous scaffolds. With the advancement of additive manufacturing (AM) and computer-aided technologies, the development of porous metal scaffolds also ushers in unprecedented opportunities. In recent years, many new metal materials and innovative design methods are used to fabricate porous scaffolds with excellent mechanical properties and biocompatibility. This article reviews the research progress of porous metal scaffolds, and introduces the AM technologies used in porous metal scaffolds. Then the applications of different metal materials in bone scaffolds are summarized, and the advantages and limitations of various scaffold design methods are discussed. Finally, we look forward to the development prospects of AM in porous metal scaffolds.

8.
Materials (Basel) ; 12(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480251

RESUMO

In this work, a biomedical Ti-6Al-4V (TC4)/Zn composite with gradient microstructures was successfully prepared by friction stir processing (FSP). The microstructures and mechanical properties of the composite were systematically studied using scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM), atom probe tomography (APT), and microhardness test. The results show that TC4/Zn composite can be successfully prepared, and gradient microstructures varying from coarse grain to nanocrystalline is formed from the bottom to the upper surface. During FSP, adding Zn can accelerate the growth of ß phase region, and the grain size significantly increases with the increasing rotation rate. The grain combination is the main mechanism for grain growth of ß phase region. The deformation mechanisms gradually change from dislocation accumulations and rearrangement to dynamic recrystallization from the bottom to the upper surface (1.5 mm-150 µm from the upper surface). The composite exhibits slightly higher microhardness compared with the matrix. This paper provides a new method to obtain a TC4/Zn composite with gradient surface microstructures for potential applications in the biomedical field.

9.
RSC Adv ; 9(49): 28857-28869, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529611

RESUMO

CO2 Huff-n-Puff (HnP) is an effective technique for enhancing oil recovery (EOR) that can be applied to shale oil reservoirs faced with poor natural productivity and low water injectivity. The main objective of this study is to investigate the interactions of CO2 and formation crude oil, and evaluate the CO2 HnP performance in shale oil reservoirs in the Qianjiang depression in China. In this study, the variation rules of oil phase behavior, viscosity, saturation pressure, and swelling factor at different CO2 contents of 0 to 65% were studied. A series of HnP experiments were conducted. The factors affecting the oil recovery were discussed, and Nuclear Magnetic Resonance (NMR) tests were conducted on core samples at different stages of the HnP process. The results show that the injected CO2 can make an positive change in the crude oil phase behavior. The oil-gas two-phase region enlarges and the saturation pressure increases as more CO2 is dissolved in the formation oil, which is beneficial to oil production. The dissolution of CO2 in the oil phase increased the oil swelling degree by 1.492 times, and the viscosity decreased from 1.944 to 0.453 mPa s. The HnP experimental results demonstrate that the soaking time should be determined based on the injection pressure. Miscible conditions is a viable option for CO2 HnP as 10% more oil can be produced using miscible HnP and save more than half of the soaking time. The results illustrate that fracture is the most important factor affecting oil recovery, and the performance of HnP EOR on core samples with fractures is almost 25% better than those without fractures. However, the core matrix permeability has an almost negligible effect on the performance of CO2 HnP. The NMR tests show that the oil recovered in the first cycle was dominated by macropores and mesopores, followed by small pores. In the latter HnP cycles, the oil in small pores and micropores becomes the main oil-producing area. This study may provide a better understanding of the CO2 HnP enhanced recovery strategy for shale reservoirs.

10.
Int J Nanomedicine ; 13: 1881-1898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636607

RESUMO

BACKGROUND: The interaction between the material and the organism affects the survival rate of the orthopedic or dental implant in vivo. Friction stir processing (FSP) is considered a new solid-state processing technology for surface modification. PURPOSE: This study aims to strengthen the surface mechanical properties and promote the osteogenic capacity of the biomaterial by constructing a Ti-6Al-4V (TC4)/zinc (Zn) surface nanocomposites through FSP. METHODS: FSP was used to modify the surface of TC4. The microstructures and mechanical properties were analyzed by scanning electron microscopy, transmission electron microscopy, nanoindentation and Vickers hardness. The biological properties of the modified surface were evaluated by the in vitro and in vivo study. RESULTS: The results showed that nanocrystalline and numerous ß regions, grain boundary α phase, coarser acicular α phase and finer acicular martensite α' appeared because of the severe plastic deformation caused by FSP, resulting in a decreased elastic modulus and an increased surface hardness. With the addition of Zn particles and the enhancement of hydrophilicity, the biocompatibility was greatly improved in terms of cell adhesion and proliferation. The in vitro osteogenic differentiation of rat bone marrow stromal cells and rapid in vivo osseointegration were enhanced on the novel TC4/Zn metal matrix nanocomposite surface. CONCLUSION: These findings suggest that this novel TC4/Zn surface nanocomposite achieved by FSP has significantly improved mechanical properties and biocompatibility, in addition to promoting osseointegration and thus has potential for dental and orthopedic applications.


Assuntos
Nanocompostos/química , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Zinco/farmacocinética , Animais , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fricção , Dureza , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Osseointegração/efeitos dos fármacos , Osteogênese/fisiologia , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/química , Zinco/química
11.
Sci Rep ; 6: 38875, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958394

RESUMO

The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin ß1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/fisiologia , Nanocompostos/química , Osteogênese , Animais , Materiais Biocompatíveis/química , Compostos Inorgânicos de Carbono/química , Adesão Celular , Células Cultivadas , Fricção , Masculino , Teste de Materiais , Fenômenos Mecânicos , Nanocompostos/ultraestrutura , Neovascularização Fisiológica , Ratos Sprague-Dawley , Compostos de Silício/química , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...