Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105974, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663563

RESUMO

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.

2.
J Ethnopharmacol ; 321: 117552, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072293

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main factors related to alcoholic liver disease (ALD) are qi stagnation and blood stasis of the five viscera. Previously, we showed that the bioactive components of Alhagi honey have various pharmacological effects in treating liver diseases, but the influence of Alhagi honey on ALD (and its mechanism of action) is not known. AIM OF THE STUDY: To determine the efficacy of the main active component of Alhagi honey, the polysaccharide AHPN80, in ALD and to explore the potential mechanism of action. MATERIALS AND METHODS: AHPN80 was isolated from dried Alhagi honey and identified by transmission electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography. Venous blood, liver tissue, and colon tissue were collected in a mouse model of alcohol-induced acute liver injury. Histology, staining (Oil Red O, Alcian Blue-Periodic Acid Schiff) and measurement of reactive oxygen species (ROS) levels were used to detect histopathologic and lipid-accumulation changes in the liver and colon. Lipopolysaccharide (LPS) levels and the content of proinflammatory cytokines in serum were measured by enzyme-linked immunosorbent assays. Commercial kits were employed to detect biochemistry parameters in serum and the liver. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining kit was used to identify hepatocyte apoptosis. Expression of tight junction-associated proteins in colon tissues and nuclear factor erythroid 2-related factor 2/heme oxygenase-1/toll-like receptor-4/mitogen-activated protein kinase (Nrf2/HO-1/TLR4/MAPK) pathway-related proteins in liver tissues and HepG2 cells were analyzed by immunofluorescence or western blotting. RESULTS: In a mouse model of alcohol-induced acute liver injury, AHPN80 therapy: significantly improved liver parameters (cytochrome P450 2E1, alcohol dehydrogenase, aldehyde dehydrogenase, superoxide dismutase, malondialdehyde, glutathione peroxidase, catalase, total cholesterol, triglycerides, alanine transaminase, aspartate transaminase); reduced serum levels of LPS, interleukin (IL)-1ß, IL-6, and tumor necrosis faction-α; increased levels of IL-10 and interferon-gamma. AHPN80 reduced ALD-induced lipid accumulation and ROS production, improved alcohol-induced inflammatory damage to hepatocytes, and inhibited hepatocyte apoptosis. Immunofluorescence staining and western blotting suggested that AHPN80 might eliminate hepatic oxidative stress by activating the Nrf2/HO-1 signaling pathway, repair the intestinal barrier, inhibit the LPS/TLR4/MAPK signaling pathway, and reduce liver inflammation. CONCLUSIONS: AHPN80 may activate the Nrf2/HO-1 pathway to eliminate oxidative stress, protect the intestinal barrier, and regulate the TLR4/MAPK pathway to treat ALD in mice. AHPN80 could be a functional food and natural medicine to prevent ALD and its complications.


Assuntos
Mel , Hepatopatias Alcoólicas , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Estresse Oxidativo , Etanol/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
3.
Int J Biol Macromol ; 259(Pt 1): 128937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145695

RESUMO

The Alhagi honey polysaccharide (AHP) exhibits notable anti-inflammatory, antioxidant, and immunomodulatory properties, positioning it as a promising candidate in traditional Chinese medicine. In this investigation, we successfully isolated and purified a neutral AHP, designated AHPN50-1a, subsequently elucidating its structural attributes. AHPN50-1a was found to have a molecular weight of 1.756 × 106 Da, featuring a structural motif characterized by a recurring (1→6)-α-GlcP linker. To comprehensively evaluate its therapeutic potential, we explored the protective effects of AHPN50-1 in a murine model of dextran sodium sulfate-induced colitis. Administration of AHPN50-1 at doses of 200 and 400 mg/kg/day resulted in improved food intake, increased body weight, and increased colon length in mice with acute colitis. Simultaneously, a reduction in the disease activity index and histological scores was observed. AHPN50-1 effectively mitigated colon tissue damage, down-regulated the expression levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) in colon tissue, restored intestinal microbiota diversity, and concentrations of short-chain fatty acids (SCFAs) of gut microbiota metabolites, thus alleviating intestinal inflammation in mice. In summary, our findings underscore the promise of AHPN50-1 as a valuable nutritional or dietary supplement for the treatment and prevention of inflammatory bowel disease.


Assuntos
Colite , Microbioma Gastrointestinal , Mel , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colo , Disbiose/tratamento farmacológico , Disbiose/patologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Citocinas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Front Plant Sci ; 14: 1247156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023833

RESUMO

Introduction: Nut quality detection is of paramount importance in primary nut processing. When striving to maintain the imperatives of rapid, efficient, and accurate detection, the precision of identifying small-sized nuts can be substantially compromised. Methods: We introduced an optimized iteration of the YOLOv5s model designed to swiftly and precisely identify both good and bad walnut nuts across multiple targets. The M3-Net network, which is a replacement for the original C3 network in MobileNetV3's YOLOv5s, reduces the weight of the model. We explored the impact of incorporating the attention mechanism at various positions to enhance model performance. Furthermore, we introduced an attentional convolutional adaptive fusion module (Acmix) within the spatial pyramid pooling layer to improve feature extraction. In addition, we replaced the SiLU activation function in the original Conv module with MetaAconC from the CBM module to enhance feature detection in walnut images across different scales. Results: In comparative trials, the YOLOv5s_AMM model surpassed the standard detection networks, exhibiting an average detection accuracy (mAP) of 80.78%, an increase of 1.81%, while reducing the model size to 20.9 MB (a compression of 22.88%) and achieving a detection speed of 40.42 frames per second. In multi-target walnut detection across various scales, the enhanced model consistently outperformed its predecessor in terms of accuracy, model size, and detection speed. It notably improves the ability to detect multi-target walnut situations, both large and small, while maintaining the accuracy and efficiency. Discussion: The results underscored the superiority of the YOLOv5s_AMM model, which achieved the highest average detection accuracy (mAP) of 80.78%, while boasting the smallest model size at 20.9 MB and the highest frame rate of 40.42 FPS. Our optimized network excels in the rapid, efficient, and accurate detection of mixed multi-target dry walnut quality, accommodating lightweight edge devices. This research provides valuable insights for the detection of multi-target good and bad walnuts during the walnut processing stage.

6.
Heliyon ; 9(10): e20386, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767496

RESUMO

By targeting the membrane (M) proteins of monkeypox virus (MPXV) strain VEROE6, we analyzed its evolutionary hierarchy and predicted its dominant antigenic B-cell epitope to provide a theoretical basis for the development of MPXV epitope vaccines and related monoclonal antibodies. In this study, phylogenetic trees were constructed based on the nucleic acid sequences of MPXV and the amino acid sequences of M proteins. The 3D structure of the MPXV_VEROE6 M proteins was predicted with AlphaFold v2.0 and the dominant antigenic B-cell epitopes were comprehensively predicted by analyzing parameters such as flexible segments, the hydrophilic index, the antigenic index, and the protein surface probability. The results showed that the M protein of MPXV_VEROE6 contained 377 amino acids, and their spatial configuration was relatively regular with a turning and random coil structure. The results of a comprehensive multiparameter analysis indicated that possible B-cell epitopes were located in the 23-28, 57-63, 67-78, 80-93, 98-105, 125-131, 143-149, 201-206, 231-237, 261-270, 291-303, and 346-362 amino acid segments. This study elucidated the structural and evolutionary characteristics of MPXV membrane proteins with the aim of providing theoretical information for the development of epitope vaccines, rapid diagnostic reagents, and monoclonal antibodies for monkeypox virus.

7.
Sci Total Environ ; 893: 164866, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329906

RESUMO

With the anticipated application of engineered nanomaterials (ENMs) as foliar fertilizers in agriculture, there is a particular need to accurately assess crop intensification capacity, potential hazards, and effects on the soil environment when ENMs are applied alone or in combination. In this study, the joint analysis of scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) showed that ZnO NPs transformed on the leaf surface or within the leaf, and Fe3O4 NPs were able to translocate from the leaf (~ 25 memu/g) into the stem (~ 4 memu/g), but were unable to enter the grain (below 1 memu/g), guaranteeing food safety. Spray application of ZnO NPs significantly improved grain Zn content of wheat (40.34 mg/kg), whereas Fe3O4 NPs treatment and Zn + Fe NPs treatment did not significantly improve grain Fe content. According to the micro X-ray fluorescence of wheat grains(µ- XRF) and physiological structure in situ analysis showed that ZnO NPs treatment and Fe3O4 NPs treatment could increase the elemental contents of Zn and Fe in the crease tissue and endosperm components, respectively, while antagonism was observed in the grain treated with Zn + Fe NPs. The 16S rRNA gene sequencing results showed that the Fe3O4 NPs treatment had the greatest negative effect on soil bacterial community, followed by Zn + Fe NPs, and ZnO NPs showed some promotion effect. This may be caused by the significantly higher elemental contents of Zn/Fe in the treated roots and soils. This study critically evaluates the application potential and environmental risks of nanomaterials as foliar fertilizers and is instructive for agricultural applications of nanomaterials alone and in combination.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/análise , Solo , Triticum , Fertilizantes/análise , RNA Ribossômico 16S , Nutrientes/análise , Grão Comestível/química , Inocuidade dos Alimentos , Poluentes do Solo/análise
8.
Sci Total Environ ; 857(Pt 1): 159307, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216048

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are metal-based nanomaterials, but their long-term effects on plant growth and the soil environment in the field remain unclear with most previous studies using short-term laboratory and glasshouse studies. In this study, we used a field experiment to examine the long-term effects of ZnO-NPs in a soil-wheat (Triticum aestivum) system. It was found that although ZnO-NPs had no significant effect on either yield or the concentration of other nutrients within the grain, the application of ZnO-NPs significantly increased Zn concentrations. Indeed, for grain, the application of ZnO-NPs to both the soil and foliage (SFZnO) (average of 33.1 mg/kg) significantly increased grain Zn concentrations compared to the the control treatment (21.7 mg/kg). Using in situ analyses, nutrients were found to accumulate primarily in the crease tissue and the aleurone layer of the grain, regardless of treatment. Specifically, the concentration of Zn in the aleurone layer for the SFZnO treatment was 2-3 times higher than that in the control, being >300 mg/kg, whilst the Zn concentration in the crease tissue was ca. 600 mg/kg in the SFZnO treatment, being two times higher than for the control. Although the application of ZnO-NPs increased the total Zn within the grain, it did not accumulate within the grain as ZnO-NPs with this being important for food safety, but rather mainly as Zn-phytate, with the remainder of the Zn complexed with either cysteine or phosphate. Finally, we also observed that ZnO-NPs caused fewer changes to the soil bacterial community structure and that it had no nano-specific toxicity.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/química , Triticum , Solo , Nanopartículas/toxicidade , Grão Comestível/química , Poluentes do Solo/análise
9.
Environ Microbiol ; 25(4): 853-866, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537150

RESUMO

Sooty moulds are a widespread group of saprophytic ascomycetes that obtain nutrients from honeydew excreted by sap-feeding insects and coat plant tissue with mycelia. Research on sooty moulds has focused on fungal morphology and phylogeny-based taxonomy, but little research has been conducted on the community structure. In this study, the PacBio sequencing platform was used to systematically analyse the fungal and bacterial diversity of the sooty mould community on camphor trees at two sampling sites. Six dominant sooty mould genera were identified, of which three genera of Dothideomycetes were enriched only in diseased samples, while three genera of Eurotiomycetes were present in both healthy and diseased samples. Bacterial diversity and co-occurrence network analysis indicated that the sooty moulds had an effect on the leaf surface bacterial communities but not on the endophyte communities. There was a close correlation between the six dominant pathogenic groups and bacteria in the soot layer. Transcriptomic data from Cinnamomum camphora samples showed that the sooty moulds that did not penetrate plant cells not only affected plant photosynthesis but also induced plant defence responses. This study systematically studied the microbial community of sooty moulds, indicating the close relationship between sooty moulds and the bacterial communities.


Assuntos
Fungos , Microbiota , Fungos/genética , Filogenia , Bactérias/genética , Microbiota/genética , Folhas de Planta
11.
Clin Transl Med ; 12(8): e886, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917402

RESUMO

BACKGROUND: The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission. METHODS: Herein, we applied single-cell sequencing to multiple tissues of 20 species (30 data sets) and integrated them with public resources (45 data sets covering 26 species) to expand the virus receptor distribution investigation. While the binding affinity between virus and receptor is essential for viral infectivity, understanding the receptor distribution could predict the permissive organs and tissues when infection occurs. RESULTS: Based on the transcriptomic data, the expression profiles of receptor or associated entry factors for viruses capable of causing respiratory, blood, and brain diseases were described in detail. Conserved cellular connectomes and regulomes were also identified, revealing fundamental cell-cell and gene-gene cross-talks from reptiles to humans. CONCLUSIONS: Overall, our study provides a resource of the single-cell atlas of the animal kingdom which could help to identify the potential host range and tissue tropism of viruses and reveal the host-virus co-evolution.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/genética , Especificidade de Hospedeiro , Humanos , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Nat Commun ; 13(1): 3620, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750885

RESUMO

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Assuntos
Células Endoteliais , Microglia , Animais , Microglia/metabolismo , Fenótipo , Regulon/genética , Análise de Célula Única , Suínos , Transcriptoma
13.
Clin Transl Med ; 12(5): e821, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522918

RESUMO

BACKGROUND: During pregnancy, mother-child interactions trigger a variety of subtle changes in the maternal body, which may be reflected in the status of peripheral blood mononuclear cells (PBMCs). Although these cells are easy to access and monitor, a PBMC atlas for pregnant women has not yet been constructed. METHODS: We applied single-cell RNA sequencing (scRNA-seq) to profile 198,356 PBMCs derived from 136 pregnant women (gestation weeks 6 to 40) and a control cohort. We also used scRNA-seq data to establish a transcriptomic clock and thereby predicted the gestational age of normal pregnancy. RESULTS: We identified reconfiguration of the peripheral immune cell phenotype during pregnancy, including interferon-stimulated gene upregulation, activation of RNA splicing-related pathways and immune activity of cell subpopulations. We also developed a cell-type-specific model to predict gestational age of normal pregnancy. CONCLUSIONS: We constructed a single-cell atlas of PBMCs in pregnant women spanning the entire gestation period, which should help improve our understanding of PBMC composition turnover in pregnant women.


Assuntos
Leucócitos Mononucleares , Gestantes , Feminino , Idade Gestacional , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Gravidez , Transcriptoma
15.
Nucleic Acids Res ; 50(D1): D934-D942, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34634807

RESUMO

Viral infectious diseases are a devastating and continuing threat to human and animal health. Receptor binding is the key step for viral entry into host cells. Therefore, recognizing viral receptors is fundamental for understanding the potential tissue tropism or host range of these pathogens. The rapid advancement of single-cell RNA sequencing (scRNA-seq) technology has paved the way for studying the expression of viral receptors in different tissues of animal species at single-cell resolution, resulting in huge scRNA-seq datasets. However, effectively integrating or sharing these datasets among the research community is challenging, especially for laboratory scientists. In this study, we manually curated up-to-date datasets generated in animal scRNA-seq studies, analyzed them using a unified processing pipeline, and comprehensively annotated 107 viral receptors in 142 viruses and obtained accurate expression signatures in 2 100 962 cells from 47 animal species. Thus, the VThunter database provides a user-friendly interface for the research community to explore the expression signatures of viral receptors. VThunter offers an informative and convenient resource for scientists to better understand the interactions between viral receptors and animal viruses and to assess viral pathogenesis and transmission in species. Database URL: https://db.cngb.org/VThunter/.


Assuntos
Bases de Dados Factuais , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Receptores Virais/genética , Software , Viroses/genética , Vírus/genética , Animais , Sítios de Ligação , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Anotação de Sequência Molecular , Ligação Proteica , Receptores Virais/classificação , Receptores Virais/metabolismo , Transdução de Sinais , Análise de Célula Única , Viroses/metabolismo , Viroses/transmissão , Viroses/virologia , Vírus/classificação , Vírus/metabolismo , Vírus/patogenicidade
16.
Sci Total Environ ; 796: 148927, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34271385

RESUMO

This study aimed to investigate the biotransformation of ZnO nanoparticles (NPs) in maize grown in hydroponics for ecotoxicity assessment. Maize seedlings grown for 14 days were exposed to a solution of 9 nm ZnO NPs, 40 nm ZnO NPs, and ZnSO4 at a Zn concentration of 300 mg L-1 for 1, 3, and 7 days, respectively. The results of in-situ Zn distribution in maize (Zea mays) showed that 9 nm ZnO NPs could quickly enter the roots of maize and reach the center column transport system of the stem. The results of transmission electron microscopy combined with energy dispersive X-ray spectroscopy revealed that ZnO NPs were accumulated in the vacuoles of the roots, and then transformed and transported through vesicles. Simulated studies showed that low pH (5.6) played a critical role in the transformation of ZnO NPs, and organic acids (Kf = 1011.4) could promote particle dissolution. Visual MINTEQ software simulated the species of Zn after the entry of ZnO NPs or Zn2+ into plants and found that the species of Zn was mainly Zn2+ when the Zn content of plants reached 200-300 ppm. Considering that the lowest Zn content of the roots in treatments was 1920 mg kg-1, combination of the result analysis of root effects showed that the toxicity of roots in most treatments had a direct relationship with Zn2+. However, treatment with 9 nm ZnO NPs exhibited significantly higher toxicity than ZnSO4 treatment on day 1 when the Zn2+ concentration difference was not significant, which was mainly due to the large amount of ZnO NPs deposited in the roots. To the authors' knowledge, this study was the first to confirm the process of biotransformation and explore the factors affecting the toxicity of ZnO NPs in depth.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Biotransformação , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Raízes de Plantas , Zea mays , Óxido de Zinco/toxicidade
17.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074049

RESUMO

The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.


Assuntos
Envelhecimento/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Morus/metabolismo , Proteínas de Plantas/metabolismo , Envelhecimento/genética , Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Hydrastis/genética , Hydrastis/metabolismo , MicroRNAs/genética , Morus/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Food Funct ; 12(11): 4960-4971, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100482

RESUMO

The composition and structure of gut microbiota plays an important role in obesity induced by a high-fat diet (HFD) and related metabolic syndrome (MetS). Previous studies have shown that galacto-oligosaccharides (GOSs) have an effective anti-obesity effect. In this study, we aimed to investigate the effect of enzymatically synthesized α-galacto-oligosaccharides (ES-α-GOSs) on MetS and gut microbiota dysbiosis in HFD-fed mice, and to further investigate whether the attenuation of MetS is associated with the modulation of gut microbiota. Our results indicated that ES-α-GOS could notably ameliorate obesity-related MetS, including hyperlipidemia, insulin resistance and mild inflammation. The subsequent analysis of gut microbiota further showed that ES-α-GOS supplements can significantly modulate the overall composition of the gut microbiota and reverse the gut microbiota disorder caused by HFD feeding. Moreover, Spearman correlation analysis showed that 40 key bacteria reversed by ES-α-GOS were highly associated with metabolic parameters. These results suggested that ES-α-GOSs could serve as a potential candidate for preventing obesity-induced MetS in association with the modulation of gut microbiota.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Síndrome Metabólica/microbiologia , Oligossacarídeos/farmacologia , Tecido Adiposo/patologia , Animais , Aspergillus niger/metabolismo , Bactérias , Glicemia , Suplementos Nutricionais , Disbiose , Dislipidemias , Galactosidases/metabolismo , Hiperlipidemias , Inflamação , Resistência à Insulina , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
19.
Front Plant Sci ; 12: 658590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889168

RESUMO

Ciboria carunculoides is the dominant causal agent of mulberry sclerotial disease, and it is a necrotrophic fungal pathogen with a narrow host range that causes devastating diseases in mulberry fruit. However, little is known about the interaction between C. carunculoides and mulberry. Here, our transcriptome sequencing results showed that the transcription of genes in the secondary metabolism and defense-related hormone pathways were significantly altered in infected mulberry fruit. Due to the antimicrobial properties of proanthocyanidins (PAs), the activation of PA biosynthetic pathways contributes to defense against pathogens. Salicylic acid (SA) and jasmonic acid (JA) are major plant defense hormones. However, SA signaling and JA signaling are antagonistic to each other. Our results showed that SA signaling was activated, while JA signaling was inhibited, in mulberry fruit infected with C. carunculoides. Yet SA mediated responses are double-edged sword against necrotrophic pathogens, as SA not only activates systemic acquired resistance (SAR) but also suppresses JA signaling. We also show here that the small secreted protein CcSSP1 of C. carunculoides activates SA signaling by targeting pathogenesis-related protein 1 (PR1). These findings reveal that the infection strategy of C. carunculoides functions by regulating SA signaling to inhibit host defense responses.

20.
Food Funct ; 11(11): 9947-9959, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33108433

RESUMO

In this study, the two enzymatic low molecular weight chitosan oligosaccharides (LMW-COSs), LMW-COS-H and LMW-COS-L, were prepared with average MWs of 879.6 Da and 360.9 Da, respectively. Compared to LMW-COS-L, the LMW-COS-H was more effective in improving high-fat diet (HFD)-induced metabolic abnormalities, such as obesity, hyperlipidemia, low-grade inflammation and insulin resistance. The subsequent analysis of gut microbiota showed that the supplement of LMW-COSs caused overall structural and genus/species-specific changes in the gut microbiota, which were significantly correlated with the metabolic parameters. Specifically, both of the LMW-COSs significantly decreased the relative abundance of inflammatory bacteria such as Erysipelatoclostridium and Alistipes, whereas that of the beneficial intestinal bacteria (such as Akkermansia and Gammaproteobacteria) increased significantly. This study suggested that there were potential prebiotic functions of LMW-COSs in HFD fed mice, which regulated the dysfunctional gut microbiota, alleviated low-grade inflammation and maintained the intestinal epithelial barrier.


Assuntos
Quitosana/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/prevenção & controle , Oligossacarídeos/administração & dosagem , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Quitosana/química , Dieta Hiperlipídica , Humanos , Resistência à Insulina , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Obesidade/etiologia , Obesidade/microbiologia , Oligossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...