Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 339: 199266, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37944758

RESUMO

Surveillance of mosquito vectors is critical for early detection, prevention and control of vector borne diseases. In this study we used advanced molecular tools, such as DNA barcoding in combination with novel sequencing technologies to discover new and already known viruses in genetically identified mosquito species. Mosquitoes were captured using BG sentinel traps in Western Kenya during May and July 2019, and homogenized individually before pooled into groups of ten mosquitoes. The pools and individual samples were then used for molecular analysis and to infect cell cultures. Of a total of fifty-four (54) 10-pools, thirteen (13) showed cytopathic effect (CPE) on VeroB4 cells, eighteen (18) showed CPE on C6/36 cells. Eight (8) 10-pools out of the 31 CPE positive pools showed CPE on both VeroB4 and C6/36 cells. When using reverse transcriptase polymerase chain reaction (RT-PCR), Sanger sequencing and Twist Comprehensive Viral Research Panel (CVRP) (Twist Biosciences), all pools were found negative by RT-PCR when using genus specific primers targeting alphaviruses, orthobunyaviruses and virus specific primers towards o'nyong-nyong virus, chikungunya virus and Sindbis virus (previously reported to circulate in the region). Interestingly, five pools were RT-PCR positive for flavivirus. Two of the RT-PCR positive pools showed CPE on both VeroB4 and C6/36 cells, two pools showed CPE on C6/36 cells alone and one pool on VeroB4 cells only. Fifty individual mosquito homogenates from the five RT-PCR positive 10-pools were analyzed further for flavivirus RNA. Of these, 19 out of the 50 individual mosquito homogenates indicated the presence of flavivirus RNA. Barcoding of the flavivirus positive mosquitoes revealed the mosquito species as Aedes aegypti (1), Mansonia uniformis (6), Anopheles spp (3), Culex pipiens (5), Culex spp (1), Coquilletidia metallica (2) and Culex quinquefasciatus (1). Of the 19 flavivirus positive individual mosquitoes, five (5) virus positive homogenates were sequenced. Genome sequences of two viruses were completed. One was identified as the single-stranded RNA Culex flavivirus and the other as the double-stranded RNA Hubei chryso-like virus 1. Both viruses were found in the same Anopheles spp. homogenate extracted from a sample that showed CPE on both VeroB4 and C6/36 cells. The detection of both viruses in a single mosquito homogenate indicated coinfection. Phylogenetic analyses suggested that the Culex flavivirus sequence detected was closely related to a Culex flavivirus isolated from Uganda in 2008. All four Hubei chryso-like virus 1 segments clusters closely to Hubei chryso-like virus 1 strains isolated in Australia, China and USA. Two novel strains of insect-specific viruses in Anopheles mosquitoes were detected and characterized.


Assuntos
Anopheles , Culex , Flavivirus , Vírus de Insetos , Animais , Anopheles/genética , Filogenia , Quênia , Vírus de Insetos/genética , RNA
2.
Front Med (Lausanne) ; 10: 1152070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051217

RESUMO

Five different mosquito-borne viruses (moboviruses) significant to human disease are known to be endemic to Fennoscandia (Sindbis virus, Inkoo virus, Tahyna virus, Chatanga virus, and Batai virus). However, the incidence of mosquito-borne virus infections in Fennoscandia is unknown, largely due to underdiagnosing and lack of surveillance efforts. The Fennoscandian moboviruses are difficult to prevent due to their method of transmission, and often difficult to diagnose due to a lack of clear case definition criteria. Thus, many cases are likely to be mis-diagnosed, or even not diagnosed at all. Significant long-term effects, often in the form of malaise, rashes, and arthralgia have been found for some of these infections. Research into mobovirus disease is ongoing, though mainly focused on a few pathogens, with many others neglected. With moboviruses found as far north as the 69th parallel, studying mosquito-borne disease occurring in the tropics is only a small part of the whole picture. This review is written with the objective of summarizing current medically relevant knowledge of moboviruses occurring in Fennoscandia, while highlighting what is yet unknown and possibly overlooked.

3.
Parasit Vectors ; 16(1): 133, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069603

RESUMO

BACKGROUND: O'nyong-nyong virus (ONNV) is a mosquito-borne alphavirus causing sporadic outbreaks of febrile illness with rash and polyarthralgia. Up to now, ONNV has been restricted to Africa and only two competent vectors have been found, Anopheles gambiae and An. funestus, which are also known malaria vectors. With globalization and invasive mosquito species migrating to ONNV endemic areas, there is a possible risk of introduction of the virus to other countries and continents. Anopheles stephensi, is closely related to An. gambiae and one of the invasive mosquito species of Asian origin that is now present in the Horn of Africa and spreading further east. We hypothesize that An. stephensi, a known primary urban malaria vector, may also serve as a new possible vector for ONNV. METHODS: One-week-old female adult An. stephensi were exposed to ONNV-infected blood, and the vector competence for ONNV, i.e. infection rates (IRs), dissemination rates (DRs), transmission rates (TRs), dissemination efficiency (DEs) and transmission efficiency (TEs), were evaluated. Infection (IRs), dissemination efficiency (DEs) and transmission efficiency (TEs) were determined. Detection of ONNV RNA was analysed by RT-qPCR in the thorax and abdomen, head, wings, legs and saliva of the infected mosquitoes at four different time points, day 7, 14, 21 and 28 after blood meal. Infectious virus in saliva was assessed by infection of Vero B4 cells. RESULTS: The mean mortality across all sampling times was 27.3% (95 confidence interval [CI] 14.7-44.2%). The mean rate of infection across all sampling periods was 89.5% (95% CI 70.6-95.9). The mean dissemination rate across sampling intervals was 43.4% (95% CI 24.3-64.2%). The mean TR and TE across all mosquito sampling time intervals were 65.3 (95% CI 28.6-93.5) and 74.6 (95% CI 52.1-89.4). The IR was 100%, 79.3%, 78.6% and 100% respectively at 7, 14, 21 and 28 dpi. The DR was the highest at 7 dpi with 76.0%, followed by 28 dpi at 57.1%, 21 dpi at 27.3% and 14 dpi at the lowest DR of 13.04%. DE was 76%, 13.8%, 25%, 57.1% and TR was 79%, 50%, 57.1% and 75% at 7, 14, 21 and 28 dpi respectively. The TE was the highest at 28 dpi, with a proportion of 85.7%. For 7, 14 and 21 dpi the transmission efficiency was 72.0%, 65.5% and 75.0% respectively. CONCLUSION: Anopheles stephensi is a competent vector for ONNV and being an invasive species spreading to different parts of the world will likely spread the virus to other regions.


Assuntos
Alphavirus , Anopheles , Malária , Animais , Feminino , Humanos , Vírus O'nyong-nyong , Anopheles/genética , Mosquitos Vetores , Malária/epidemiologia , Alphavirus/genética
4.
Virol J ; 19(1): 99, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659694

RESUMO

BACKGROUND: Mosquito-borne viruses pose a serious threat to humans worldwide. There has been an upsurge in the number of mosquito-borne viruses in Europe, mostly belonging to the families Togaviridae, genus Alphavirus (Sindbis, Chikungunya), Flaviviridae (West Nile, Usutu, Dengue), and Peribunyaviridae, genus Orthobunyavirus, California serogroup (Inkoo, Batai, Tahyna). The principal focus of this study was Inkoo (INKV) and Sindbis (SINV) virus circulating in Norway, Sweden, Finland, and some parts of Russia. These viruses are associated with morbidity in humans. However, there is a knowledge gap regarding reservoirs and transmission. Therefore, we aimed to determine the prevalence of INKV and SINV in blood sucking insects and seroprevalence for INKV in semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) in Norway. MATERIALS AND METHODS: In total, 213 pools containing about 25 blood sucking insects (BSI) each and 480 reindeer sera were collected in eight Norwegian reindeer summer pasture districts during 2013-2015. The pools were analysed by RT-PCR to detect INKV and by RT-real-time PCR for SINV. Reindeer sera were analysed for INKV-specific IgG by an Indirect Immunofluorescence Assay (n = 480, IIFA) and a Plaque Reduction Neutralization Test (n = 60, PRNT). RESULTS: Aedes spp. were the most dominant species among the collected BSI. Two of the pools were positive for INKV-RNA by RT-PCR and were confirmed by pyrosequencing. The overall estimated pool prevalence (EPP) of INKV in Norway was 0.04%. None of the analysed pools were positive for SINV. Overall IgG seroprevalence in reindeer was 62% positive for INKV by IIFA. Of the 60 reindeer sera- analysed by PRNT for INKV, 80% were confirmed positive, and there was no cross-reactivity with the closely related Tahyna virus (TAHV) and Snowshoe hare virus (SSHV). CONCLUSION: The occurrence and prevalence of INKV in BSI and the high seroprevalence against the virus among semi-domesticated reindeer in Norway indicate that further studies are required for monitoring this virus. SINV was not detected in the BSI in this study, however, human cases of SINV infection are yearly reported from other regions such as Rjukan in south-central Norway. It is therefore essential to monitor both viruses in the human population. Our findings are important to raise awareness regarding the geographical distribution of these mosquito-borne viruses in Northern Europe.


Assuntos
Aedes , Vírus da Encefalite da Califórnia , Flavivirus , Rena , Animais , Vírus da Encefalite da Califórnia/genética , Imunoglobulina G , Noruega/epidemiologia , Estudos Soroepidemiológicos , Sindbis virus/genética , Tundra
5.
Viruses ; 14(3)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336963

RESUMO

The ongoing COVID-19 pandemic has stimulated a search for reservoirs and species potentially involved in back and forth transmission. Studies have postulated bats as one of the key reservoirs of coronaviruses (CoVs), and different CoVs have been detected in bats. So far, CoVs have not been found in bats in Sweden and we therefore tested whether they carry CoVs. In summer 2020, we sampled a total of 77 adult bats comprising 74 Myotis daubentonii, 2 Pipistrellus pygmaeus, and 1 M. mystacinus bats in southern Sweden. Blood, saliva and feces were sampled, processed and subjected to a virus next-generation sequencing target enrichment protocol. An Alphacoronavirus was detected and sequenced from feces of a M. daubentonii adult female bat. Phylogenetic analysis of the almost complete virus genome revealed a close relationship with Finnish and Danish strains. This was the first finding of a CoV in bats in Sweden, and bats may play a role in the transmission cycle of CoVs in Sweden. Focused and targeted surveillance of CoVs in bats is warranted, with consideration of potential conflicts between public health and nature conservation required as many bat species in Europe are threatened and protected.


Assuntos
Alphacoronavirus , COVID-19 , Quirópteros , Animais , COVID-19/epidemiologia , Feminino , Humanos , Pandemias , Filogenia , Suécia
6.
Vector Borne Zoonotic Dis ; 21(10): 809-816, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34559011

RESUMO

Crimean Congo Hemorrhagic Fever (CCHF) is an emerging tick-borne zoonotic viral disease with the potential of causing public health emergencies. However, less is known about the role of wildlife and livestock in spreading the virus. Therefore, we aimed to assess how the interactions between African buffalo (Syncerus caffer) and cattle may influence the seroprevalence of CCHF across livestock-wildlife management systems in Kenya. The study included archived sera samples from buffalo and cattle from wildlife only habitats (Lake Nakuru National Park and Solio conservancy), open wildlife-livestock integrated habitats (Maasai Mara ecosystem and Meru National Park), and closed wildlife-livestock habitats (Ol Pejeta Conservancy) in Kenya. We analyzed 191 buffalo and 139 cattle sera using IDvet multispecies, double-antigen IgG enzyme-linked immunosorbent assay (ELISA). The seroprevalence toward Crimean Congo hemorrhagic fever virus (CCHFV) was significantly higher for buffalo compared to cattle (75.3% and 28.1%, respectively, p < 0.001). We obtained the highest seroprevalence among buffalo of 92.1% in closed wildlife only systems compared to 28.8% and 46.1% prevalence in closed-integrated and open-integrated systems, respectively. The regression coefficients were all negative for cattle compared to buffalo in both closed-integrated and open-integrated compared to wildlife only system. Our results show that CCHFV circulates among the diverse animal community in Kenya in spatially disconnected foci. The habitat overlap between cattle and buffalo makes cattle a "bridge species" or superspreader host for CCHFV and increases transmission risks to humans. The effect of animal management system on prevalence is depended on tick control on the cattle and not the animal per se. We conclude that buffalo, a host with a longer life span than livestock, is a reservoir and may serve as a sentinel population for longitudinal surveillance of CCHFV.


Assuntos
Doenças dos Bovinos , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Animais Selvagens , Anticorpos Antivirais , Bovinos , Doenças dos Bovinos/epidemiologia , Ecossistema , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Quênia/epidemiologia , Gado , Estudos Soroepidemiológicos
7.
Vector Borne Zoonotic Dis ; 21(10): 731-746, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424778

RESUMO

Emerging mosquito-borne viruses continue to cause serious health problems and economic burden among billions of people living in and near the tropical belt of the world. The highly invasive mosquito species Aedes aegypti and Aedes albopictus have successively invaded and expanded their presence as key vectors of Chikungunya virus, dengue virus, yellow fever virus, and Zika virus, and that has consecutively led to frequent outbreaks of the corresponding viral diseases. Of note, these two mosquito species have gradually adapted to the changing weather and environmental conditions leading to a shift in the epidemiology of the viral diseases, and facilitated their establishment in new ecozones inhabited by immunologically naive human populations. Many abilities of Ae. aegypti and Ae. albopictus, as vectors of significant arbovirus pathogens, may affect the infection and transmission rates after a bloodmeal, and may influence the vector competence for either virus. We highlight that many collaborating risk factors, for example, the global transportation systems may result in sporadic and more local outbreaks caused by mosquito-borne viruses related to Ae. aegypti and/or Ae. albopictus. Those local outbreaks could in synergy grow and produce larger epidemics with pandemic characters. There is an urgent need for improved surveillance of vector populations, human cases, and reliable prediction models. In summary, we recommend new and innovative strategies for the prevention of these types of infections.


Assuntos
Aedes , Arbovírus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/veterinária
8.
Viruses ; 13(6)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199600

RESUMO

In 2012, Tigray orthohantavirus was discovered in Ethiopia, but its seasonal infection in small mammals, and whether it poses a risk to humans was unknown. The occurrence of small mammals, rodents and shrews, in human inhabitations in northern Ethiopia is affected by season and presence of stone bunds. We sampled small mammals in two seasons from low- and high-density stone bund fields adjacent to houses and community-protected semi-natural habitats in Atsbi and Hagere Selam, where Tigray orthohantavirus was first discovered. We collected blood samples from both small mammals and residents using filter paper. The presence of orthohantavirus-reactive antibodies in blood was then analyzed using immunofluorescence assay (human samples) and enzyme linked immunosorbent assays (small mammal samples) with Puumala orthohantavirus as antigen. Viral RNA was detected by RT-PCR using small mammal blood samples. Total orthohantavirus prevalence (antibodies or virus RNA) in the small mammals was 3.37%. The positive animals were three Stenocephalemys albipes rats (prevalence in this species = 13.04%). The low prevalence made it impossible to determine whether season and stone bunds were associated with orthohantavirus prevalence in the small mammals. In humans, we report the first detection of orthohantavirus-reactive IgG antibodies in Ethiopia (seroprevalence = 5.26%). S. albipes lives in close proximity to humans, likely increasing the risk of zoonotic transmission.


Assuntos
Anticorpos Antivirais/sangue , Reservatórios de Doenças/virologia , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/imunologia , Orthohantavírus/imunologia , Doenças dos Roedores/imunologia , Animais , Estudos Transversais , Etiópia/epidemiologia , Feminino , Orthohantavírus/genética , Infecções por Hantavirus/transmissão , Humanos , Imunoglobulina G/sangue , Masculino , Prevalência , RNA Viral/genética , Ratos , Fatores de Risco , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , População Rural
9.
Virol J ; 17(1): 198, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33375950

RESUMO

BACKGROUND: Rodent borne hantaviruses are emerging viruses infecting humans through inhalation. They cause hemorrhagic fever with renal syndrome and hemorrhagic cardiopulmonary syndrome. Recently, hantaviruses have been detected in other small mammals such as Soricomorpha (shrews, moles) and Chiroptera (bats), suggested as reservoirs for potential pandemic viruses and to play a role in the evolution of hantaviruses. It is important to study the global virome in different reservoirs, therefore our aim was to investigate whether shrews in Sweden carried any hantaviruses. Moreover, to accurately determine the host species, we developed a molecular method for identification of shrews. METHOD: Shrews (n = 198), caught during 1998 in Sweden, were screened with a pan-hantavirus PCR using primers from a conserved region of the large genome segment. In addition to morphological typing of shrews, we developed a molecular based typing method using sequencing of the mitochondrial cytochrome C oxidase I (COI) and cytochrome B (CytB) genes. PCR amplified hantavirus and shrew fragments were sequenced and phylogenetically analysed. RESULTS: Hantavirus RNA was detected in three shrews. Sequencing identified the virus as Seewis hantavirus (SWSV), most closely related to previous isolates from Finland and Russia. All three SWSV sequences were retrieved from common shrews (Sorex araneus) sampled in Västerbotten County, Sweden. The genetic assay for shrew identification was able to identify native Swedish shrew species, and the genetic typing of the Swedish common shrews revealed that they were most similar to common shrews from Russia. CONCLUSION: We detected SWSV RNA in Swedish common shrew samples and developed a genetic assay for shrew identification based on the COI and CytB genes. This was the first report of presence of hantavirus in Swedish shrews.


Assuntos
Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Infecções por Hantavirus/veterinária , Infecções por Hantavirus/virologia , Orthohantavírus/genética , Orthohantavírus/isolamento & purificação , Musaranhos/virologia , Animais , Código de Barras de DNA Taxonômico , Variação Genética , Orthohantavírus/classificação , Filogenia , RNA Viral/análise , RNA Viral/genética , Análise de Sequência de DNA , Suécia
10.
Vector Borne Zoonotic Dis ; 20(2): 71-81, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31556813

RESUMO

Introduction: Two species of Aedes (Ae.) mosquitoes (Ae. aegypti and Ae. albopictus) are primary vectors for emerging arboviruses that are a significant threat to public health and economic burden worldwide. Distribution of these vectors and the associated arboviruses, such as dengue virus, chikungunya virus, yellow fever virus, and Zika virus, was for a long time restricted by geographical, ecological, and biological factors. Presently, arbovirus emergence and dispersion are more rapid and geographically widespread, largely due to expansion of the range for these two mosquitoes that have exploited the global transportation network, land perturbation, and failure to contain the mosquito population coupled with enhanced vector competence. Ae. aegypti and Ae. albopictus may also sustain transmission between humans without having to depend on their natural reservoir forest cycles due to arthropod adaptation to urbanization. Currently, there is no single strategy that is adequate to control these vectors, especially when managing arbovirus outbreaks. Objective: This review aimed at presenting the characteristics and abilities of Ae. aegypti and Ae. albopictus, which can drive a global public health risk, and suggests strategies for prevention and control. Methods: This review presents the geographic range, reproduction and ecology, vector competence, genetic evolution, and biological and chemical control of these two mosquito species and how they have changed and developed over time combined with factors that may drive pandemics and mitigation measures. Conclusion: We suggest that more efforts should be geared toward the development of a concerted multidisciplinary approach.


Assuntos
Aedes/virologia , Infecções por Arbovirus/transmissão , Mosquitos Vetores , Distribuição Animal , Animais , Infecções por Arbovirus/epidemiologia , Arbovírus , Humanos , Controle de Mosquitos/métodos , Pandemias , Fatores de Risco
11.
Vector Borne Zoonotic Dis ; 19(2): 128-133, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30300110

RESUMO

INTRODUCTION: Sindbis virus (SINV) is a mosquito-borne Alphavirus known to infect birds and cause intermittent outbreaks among humans in Fenno-Scandia. In Sweden, the endemic area has mainly been in central Sweden. Recently, SINV infections have emerged to northern Sweden, but the vectorial efficiency for SINV of mosquito species in this northern region has not yet been ascertained. OBJECTIVE: Mosquito larvae were sampled from the Umeå region in northern Sweden and propagated in a laboratory to adult stage to investigate the infection, dissemination, and transmission efficiency of SINV in mosquitoes. MATERIALS AND METHODS: The mosquito species were identified by DNA barcoding of the cytochrome oxidase I gene. Culex torrentium was the most abundant (82.2%) followed by Culex pipiens (14.4%), Aedes annulipes (1.1%), Anopheles claviger (1.1%), Culiseta bergrothi (1.1%), or other unidentified species (1.1%). Mosquitoes were fed with SINV-infected blood and monitored for 29 days to determine the viral extrinsic incubation period. Infection and dissemination were determined by RT-qPCR screening of dissected body parts of individual mosquitoes. Viral transmission was determined from saliva collected from individual mosquitoes at 7, 14, and 29 days. SINV was detected by cell culture using BHK-21 cells, RT-qPCR, and sequencing. RESULTS: Cx. torrentium was the only mosquito species in our study that was able to transmit SINV. The overall transmission efficiency of SINV in Cx. torrentium was 6.8%. The rates of SINV infection, dissemination, and transmission in Cx. torrentium were 11%, 75%, and 83%, respectively. CONCLUSIONS: Cx. torrentium may be the key vector involved in SINV transmission in northern Sweden.


Assuntos
Culex/virologia , Mosquitos Vetores/virologia , Sindbis virus/fisiologia , Animais , Feminino , Especificidade da Espécie , Suécia
12.
Data Brief ; 16: 762-770, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29276743

RESUMO

Rift Valley fever (RVF) is a zoonotic disease affecting humans and animals. It is caused by RVF virus transmitted primarily by Aedes mosquitoes. The data presented in this article propose environmental layers suitable for mapping RVF vector habitat zones and livestock migratory routes. Using species distribution modelling, we used RVF vector occurrence data sampled along livestock migratory routes to identify suitable vector habitats within the study region which is located in the central and the north-eastern part of Kenya. Eleven herds monitored with GPS collars were used to estimate cattle utilization distribution patterns. We used kernel density estimator to produce utilization contours where the 0.5 percentile represents core grazing areas and the 0.99 percentile represents the entire home range. The home ranges were overlaid on the vector suitability map to identify risks zones for possible RVF exposure. Assimilating high spatial and temporal livestock movement and vector distribution datasets generates new knowledge in understanding RVF epidemiology and generates spatially explicit risk maps. The results can be used to guide vector control and vaccination strategies for better disease control.

13.
Virol J ; 14(1): 61, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28330505

RESUMO

BACKGROUND: Inkoo virus (INKV) is a less known mosquito-borne virus belonging to Bunyaviridae, genus Orthobunyavirus, California serogroup. Studies indicate that INKV infection is mainly asymptomatic, but can cause mild encephalitis in humans. In northern Europe, the sero-prevalence against INKV is high, 41% in Sweden and 51% in Finland. Previously, INKV RNA has been detected in adult Aedes (Ae.) communis, Ae. hexodontus and Ae. punctor mosquitoes and Ae. communis larvae, but there are still gaps of knowledge regarding mosquito vectors and genetic diversity. Therefore, we aimed to determine the occurrence of INKV in its mosquito vector and characterize the isolates. METHODS: About 125,000 mosquitoes were collected during a mosquito-borne virus surveillance in northern Sweden during the summer period of 2015. Of these, 10,000 mosquitoes were processed for virus isolation and detection using cell culture and RT-PCR. Virus isolates were further characterized by whole genome sequencing. Genetic typing of mosquito species was conducted by cytochrome oxidase subunit I (COI) gene amplification and sequencing (genetic barcoding). RESULTS: Several Ae. communis mosquitoes were found positive for INKV RNA and two isolates were obtained. The first complete sequences of the small (S), medium (M), and large (L) segments of INKV in Sweden were obtained. Phylogenetic analysis showed that the INKV genome was most closely related to other INKV isolates from Sweden and Finland. Of the three INKV genome segments, the INKV M segment had the highest frequency of non-synonymous mutations. The overall G/C-content of INKV genes was low for the N/NSs genes (43.8-45.5%), polyprotein (Gn/Gc/NSm) gene (35.6%) and the RNA polymerase gene (33.8%) This may be due to the fact that INKV in most instances utilized A or T in the third codon position. CONCLUSIONS: INKV is frequently circulating in northern Sweden and Ae. communis is the key vector. The high mutation rate of the INKV M segment may have consequences on virulence.


Assuntos
Aedes/virologia , Genoma Viral , Mosquitos Vetores/virologia , Orthobunyavirus/genética , Orthobunyavirus/isolamento & purificação , RNA Viral/genética , Análise de Sequência de DNA , Aedes/classificação , Aedes/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suécia , Proteínas Virais/genética , Cultura de Vírus
14.
PLoS Negl Trop Dis ; 11(2): e0005341, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28212379

RESUMO

BACKGROUND: Rift Valley fever (RVF) is a mosquito-borne viral zoonosis of ruminants and humans that causes outbreaks in Africa and the Arabian Peninsula with significant public health and economic consequences. Humans become infected through mosquito bites and contact with infected livestock. The virus is maintained between outbreaks through vertically infected eggs of the primary vectors of Aedes species which emerge following rains with extensive flooding. Infected female mosquitoes initiate transmission among nearby animals, which amplifies virus, thereby infecting more mosquitoes and moving the virus beyond the initial point of emergence. With each successive outbreak, RVF has been found to expand its geographic distribution to new areas, possibly driven by available vectors. The aim of the present study was to determine if RVF virus (RVFV) transmission risk in two different ecological zones in Kenya could be assessed by looking at the species composition, abundance and distribution of key primary and secondary vector species and the level of virus activity. METHODOLOGY: Mosquitoes were trapped during short and long rainy seasons in 2014 and 2015 using CO2 baited CDC light traps in two counties which differ in RVF epidemic risk levels(high risk Tana-River and low risk Isiolo),cryo-preserved in liquid nitrogen, transported to the laboratory, and identified to species. Mosquito pools were analyzed for virus infection using cell culture screening and molecular analysis. FINDINGS: Over 69,000 mosquitoes were sampled and identified as 40 different species belonging to 6 genera (Aedes, Anopheles, Mansonia, Culex, Aedeomyia, Coquillettidia). The presence and abundance of Aedes mcintoshi and Aedes ochraceus, the primary mosquito vectors associated with RVFV transmission in outbreaks, varied significantly between Tana-River and Isiolo. Ae. mcintoshi was abundant in Tana-River and Isiolo but notably, Aedes ochraceus found in relatively high numbers in Tana-River (n = 1,290), was totally absent in all Isiolo sites. Fourteen virus isolates including Sindbis, Bunyamwera, and West Nile fever viruses were isolated mostly from Ae. mcintoshi sampled in Tana-River. RVFV was not detected in any of the mosquitoes. CONCLUSION: This study presents the geographic distribution and abundance of arbovirus vectors in two Kenyan counties, which may assist with risk assessment for mosquito borne diseases.


Assuntos
Infecções por Arbovirus/transmissão , Arbovírus/fisiologia , Culicidae/fisiologia , Insetos Vetores/fisiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Distribuição Animal , Animais , Infecções por Arbovirus/virologia , Culicidae/classificação , Culicidae/virologia , Ecossistema , Feminino , Humanos , Insetos Vetores/virologia , Quênia , Febre do Vale de Rift/virologia , Estações do Ano
15.
J Wildl Dis ; 52(3): 599-608, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27224210

RESUMO

Following mass deaths of Laughing Doves (Streptopelia senegalensis) in different localities throughout Kenya, internal organs obtained during necropsy of two moribund birds were sampled and analyzed by next generation sequencing. We isolated the virulent strain of pigeon paramyxovirus type-1 (PPMV-1), PPMV1/Laughing Dove/Kenya/Isiolo/B2/2012, which had a characteristic fusion gene motif (110)GGRRQKRF(117). We obtained a partial full genome of 15,114 nucleotides. The phylogenetic relationship based on the fusion gene and genomic sequence grouped our isolate as class II genotype VI, a group of viruses commonly isolated from wild birds but potentially lethal to Chickens ( Gallus gallus domesticus ). The fusion gene isolate clustered with PPMV-I strains from pigeons (Columbidae) in Nigeria. The complete genome showed a basal and highly divergent lineage to American, European, and Asian strains, indicating a divergent evolutionary pathway. The isolated strain is highly virulent and apparently species-specific to Laughing Doves in Kenya. Risk of transmission of such a strain to poultry is potentially high whereas the cyclic epizootic in doves is a threat to conservation of wild Columbidae in Kenya.


Assuntos
Columbidae/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Doença de Newcastle/genética , Filogenia , Animais , Galinhas , Genômica , Quênia , Doença de Newcastle
16.
Am J Trop Med Hyg ; 94(5): 1103-1106, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-26928830

RESUMO

The mosquito-borne Inkoo virus (INKV) is a member of the California serogroup in the family Bunyaviridae, genus Orthobunyavirus These viruses are associated with fever and encephalitis, although INKV infections are not usually reported and the incidence is largely unknown. The aim of the study was to determine the prevalence of anti-INKV antibodies and associated risk factors in humans living in northern Sweden. Seroprevalence was investigated using the World Health Organization Monitoring of Trends and Determinants in Cardiovascular Disease study, where a randomly selected population aged between 25 and 74 years (N = 1,607) was invited to participate. The presence of anti-INKV IgG antibodies was determined by immunofluorescence assay. Seropositivity for anti-INKV was significantly higher in men (46.9%) than in women (34.8%; P < 0.001). In women, but not in men, the prevalence increased somewhat with age (P = 0.06). The peak in seropositivity was 45-54 years for men and 55-64 years for women. Living in rural areas was associated with a higher seroprevalence. In conclusion, the prevalence of anti-INKV antibodies was high in northern Sweden and was associated with male sex, older age, and rural living. The age distribution indicates exposure to INKV at a relatively early age. These findings will be important for future epidemiological and clinical investigations of this relatively unknown mosquito-borne virus.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Orthobunyavirus/isolamento & purificação , Estudos Soroepidemiológicos , Adulto , Idoso , Infecções por Bunyaviridae/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Fatores de Risco , Suécia/epidemiologia
17.
Infect Ecol Epidemiol ; 5: 30106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26679561

RESUMO

BACKGROUND: Rift Valley fever (RVF) is a fatal arthropod-borne zoonotic disease of livestock and humans. Since the identification of RVF in Kenya in the 1930s, repeated epizootics and epidemics coinciding with El Niño events have occurred in several locations in Africa and Saudi Arabia, causing mass deaths of livestock and humans. RVF is of great interest worldwide because of its negative effect on international livestock trade and its potential to spread globally. The latter is due to the increasing incidence of extreme climatic phenomena caused by global warming, as well as to the increase in global trade and international travel. How RVF is maintained and sustained between epidemics and epizootics is not clearly understood, but it has been speculated that wildlife reservoirs and trans-ovarian transmission in the vector may be important. Several studies have examined the role of wildlife and livestock in isolation or in a limited geographical location within the one country over a short time (usually less than a year). In this study, we examined the seroprevalence of anti-RVF antibodies in cattle and several wildlife species from several locations in Kenya over an inter-epidemic period spanning up to 7 years. METHODS: A serological survey of immunoglobulin G (IgG) antibodies to RVF using competitive ELISA was undertaken on 297 serum samples from different wildlife species at various locations in Kenya. The samples were collected between 2008 and 2015. Serum was also collected in 2014 from 177 cattle from Ol Pejeta Conservancy; 113 of the cattle were in close contact with wildlife and the other 64 were kept separate from buffalo and large game by an electric fence. RESULTS: The seroprevalence of RVF virus (RVFV) antibody was 11.6% in wildlife species during the study period. Cattle that could come in contact with wildlife and large game were all negative for RVFV. The seroprevalence was relatively high in elephants, rhinoceros, and buffalo, but there were no antibodies in zebras, baboons, vervet monkeys, or wildebeest. CONCLUSIONS: Diverse species in conservation areas are exposed to RVFV. RVFV exposure in buffalo may indicate distribution of the virus over wide geographical areas beyond known RVFV foci in Kenya. This finding calls for thorough studies on the epizootology of RVFV in specific wildlife species and locations.

18.
Infect Ecol Epidemiol ; 5: 29853, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689654

RESUMO

Arthropod-borne viruses (arboviruses) may cause severe emerging and re-emerging infectious diseases, which pose a significant threat to human and animal health in the world today. These infectious diseases range from mild febrile illnesses, arthritis, and encephalitis to haemorrhagic fevers. It is postulated that certain environmental factors, vector competence, and host susceptibility have a major impact on the ecology of arboviral diseases. Presently, there is a great interest in the emergence of Alphaviruses because these viruses, including Chikungunya virus, O'nyong'nyong virus, Sindbis virus, Ross River virus, and Mayaro virus, have caused outbreaks in Africa, Asia, Australia, Europe, and America. Some of these viruses are more common in the tropics, whereas others are also found in temperate regions, but the actual factors driving Alphavirus emergence and re-emergence remain unresolved. Furthermore, little is known about the transmission dynamics, pathophysiology, genetic diversity, and evolution of circulating viral strains. In addition, the clinical presentation of Alphaviruses may be similar to other diseases such as dengue, malaria, and typhoid, hence leading to misdiagnosis. However, the typical presence of arthritis may distinguish between Alphaviruses and other differential diagnoses. The absence of validated diagnostic kits for Alphaviruses makes even routine surveillance less feasible. For that purpose, this review describes the occurrence, genetic diversity, clinical characteristics, and the mechanisms involving Alphaviruses causing arthritis in humans. This information may serve as a basis for better awareness and detection of Alphavirus-caused diseases during outbreaks and in establishing appropriate prevention and control measures.

19.
Parasit Vectors ; 7: 542, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430727

RESUMO

BACKGROUND: West Nile virus (WNV) has a wide geographical distribution and has been associated to cause neurological disease in humans and horses. Mosquitoes are the traditional vectors for WNV; however, the virus has also been isolated from tick species in North Africa and Europe which could be a means of introduction and spread of the virus over long distances through migratory birds. Although WNV has been isolated in mosquitoes in Kenya, paucity of genetic and pathogenicity data exists. We previously reported the isolation of WNV from ticks collected from livestock and wildlife in Ijara District of Kenya, a hotspot for arbovirus activity. Here we report the full genome sequence and phylogenetic investigation of their origin and relation to strains from other regions. METHODS: A total of 10,488 ticks were sampled from animal hosts, classified to species and processed in pools of up to eight ticks per pool. Virus screening was performed by cell culture, RT-PCR and sequencing. Phylogenetic analysis was carried out to determine the evolutionary relationships of our isolate. RESULTS: Among other viruses, WNV was isolated from a pool of Rhipicephalus pulchellus sampled from cattle, sequenced and submitted to GenBank (Accession number: KC243146). Comparative analysis with 27 different strains revealed that our isolate belongs to lineage 1 and clustered relatively closely to isolates from North Africa and Europe, Russia and the United States. Overall, Bayesian analysis based on nucleotide sequences showed that lineage 1 strains including the Kenyan strain had diverged 200 years ago from lineage 2 strains of southern Africa. Ijara strain collected from a tick sampled on livestock was closest to another Kenyan strain and had diverged 20 years ago from strains detected in Morocco and Europe and 30 years ago from strains identified in the USA. CONCLUSION: To our knowledge, this is the first characterized WNV strain isolated from R. pulchellus. The epidemiological role of this tick in WNV transmission and dissemination remains equivocal but presents tick verses mosquito virus transmission has been neglected. Genetic data of this strain suggest that lineage 1 strains from Africa could be dispersed through tick vectors by wild migratory birds to Europe and beyond.


Assuntos
Genoma Viral , Filogenia , Carrapatos/virologia , Vírus do Nilo Ocidental/genética , Animais , Regulação Viral da Expressão Gênica/fisiologia , Genótipo , Quênia/epidemiologia , Gado/parasitologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/virologia
20.
Vector Borne Zoonotic Dis ; 13(9): 637-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23805790

RESUMO

Tick-borne viruses infect humans through the bite of infected ticks during opportunistic feeding or through crushing of ticks by hand and, in some instances, through contact with infected viremic animals. The Ijara District, an arid to semiarid region in northern Kenya, is home to a pastoralist community for whom livestock keeping is a way of life. Part of the Ijara District lies within the boundaries of a Kenya Wildlife Service-protected conservation area. Arbovirus activity among mosquitoes, animals, and humans is reported in the region, mainly because prevailing conditions necessitate that people continuously move their animals in search of pasture, bringing them in contact with ongoing arbovirus transmission cycles. To identify the tick-borne viruses circulating among these communities, we analyzed ticks sampled from diverse animal hosts. A total of 10,488 ticks were sampled from both wildlife and livestock hosts and processed in 1520 pools of up to eight ticks per pool. The sampled ticks were classified to species, processed for virus screening by cell culture using Vero cells and RT-PCR (in the case of Hyalomma species), followed by amplicon sequencing. The tick species sampled included Rhipicephalus pulchellus (76.12%), Hyalomma truncatum (8.68%), Amblyomma gemma (5.00%), Amblyomma lepidum (4.34%), and others (5.86%). We isolated and identified Bunyamwera (44), Dugbe (5), Ndumu (2), Semliki forest (25), Thogoto (3), and West Nile (3) virus strains. This observation constitutes a previously unreported detection of mosquito-borne Semliki forest and Bunyamwera viruses in ticks, and association of West Nile virus with A. gemma and Rh. pulchellus ticks. These findings provide additional evidence on the potential role of ticks and associated animals in the circulation of diverse arboviruses in northeastern Kenya, including viruses previously known to be essentially mosquito borne.


Assuntos
Vetores Aracnídeos/classificação , Infecções por Arbovirus/epidemiologia , Arbovírus/isolamento & purificação , Ixodidae/classificação , Animais , Animais Selvagens , Vetores Aracnídeos/virologia , Infecções por Arbovirus/virologia , Arbovírus/classificação , Chlorocebus aethiops , Estudos Transversais , Humanos , Ixodidae/virologia , Quênia/epidemiologia , Gado , Rhipicephalus/classificação , Rhipicephalus/virologia , Análise de Sequência de DNA , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...