Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 20(1): 16, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287427

RESUMO

BACKGROUND: One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS: A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS: We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.

2.
Plants (Basel) ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896095

RESUMO

The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.

3.
Plants (Basel) ; 10(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451755

RESUMO

Seed maturation comprises important developmental processes, such as seed filling and the acquisition of seed germination capacity, desiccation tolerance, longevity, and dormancy. The molecular regulation of these processes is tightly controlled by the LAFL transcription factors, among which ABSCISIC ACID INSENSITIVE 3 (ABI3) was shown to be involved in most of these seed maturation processes. Here, we studied the ABI3 gene from Medicago truncatula, a model legume plant for seed studies. With the transcriptomes of two loss-of-function Medicago abi3 mutants, we were able to show that many gene classes were impacted by the abi3 mutation at different stages of early, middle, and late seed maturation. We also discovered three MtABI3 expression isoforms, which present contrasting expression patterns during seed development. Moreover, by ectopically expressing these isoforms in Medicago hairy roots generated from the abi3 mutant line background, we showed that each isoform regulated specific gene clusters, suggesting divergent molecular functions. Furthermore, we complemented the Arabidopsis abi3 mutant with each of the three MtABI3 isoforms and concluded that all isoforms were capable of restoring seed viability and desiccation tolerance phenotypes even if not all isoforms complemented the seed color phenotype. Taken together, our results allow a better understanding of the ABI3 network in Medicago during seed development, as well as the discovery of commonly regulated genes from the three MtABI3 isoforms, which can give us new insights into how desiccation tolerance and seed viability are regulated.

4.
Front Plant Sci ; 12: 673072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149774

RESUMO

Legume seeds are an important source of proteins, minerals, and vitamins for human and animal diets and represent a keystone for food security. With climate change and global warming, the production of grain legumes faces new challenges concerning seed vigor traits that allow the fast and homogenous establishment of the crop in a wide range of environments. These seed performance traits are regulated during seed maturation and are under the strong influence of the maternal environment. In this study, we used 200 natural Medicago truncatula accessions, a model species of legumes grown in optimal conditions and under moderate heat stress (26°C) during seed development and maturation. This moderate stress applied at flowering onwards impacted seed weight and germination capacity. Genome-wide association studies (GWAS) were performed to identify putative loci or genes involved in regulating seed traits and their plasticity in response to heat stress. We identified numerous significant quantitative trait nucleotides and potential candidate genes involved in regulating these traits under heat stress by using post-GWAS analyses combined with transcriptomic data. Out of them, MtMIEL1, a RING-type zinc finger family gene, was shown to be highly associated with germination speed in heat-stressed seeds. In Medicago, we highlighted that MtMIEL1 was transcriptionally regulated in heat-stressed seed production and that its expression profile was associated with germination speed in different Medicago accessions. Finally, a loss-of-function analysis of the Arabidopsis MIEL1 ortholog revealed its role as a regulator of germination plasticity of seeds in response to heat stress.

5.
Plant J ; 106(5): 1298-1311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33733554

RESUMO

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for determining this plasticity. This list was enriched in genes related to transcription, DNA repair and signal transduction, with many of them being stress responsive. Other over-represented genes were related to sulfur and aspartate family pathways leading to the synthesis of the nutritionally essential amino acids methionine and lysine. By placing these genes in metabolic pathways, and using a M. truncatula mutant impaired in regenerating methionine from S-methylmethionine, we discovered that methionine recycling pathways are major contributors to globulin composition establishment and plasticity. These data provide a unique resource of genes that can be targeted to mitigate negative impacts of environmental stresses on seed protein composition.


Assuntos
Medicago truncatula/genética , Proteínas de Armazenamento de Sementes/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Globulinas/genética , Globulinas/metabolismo , Medicago truncatula/fisiologia , Metionina/metabolismo , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico , Vitamina U/metabolismo
6.
Data Brief ; 34: 106671, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33409343

RESUMO

Seed vigor is an estimate of how successfully a seed lot will establish seedlings under a wide range of environmental conditions, with both the embryo and the surrounding endosperm playing distinct roles in the germination behaviour. Germination and seedling establishment are essential for crop production to be both sustainable and profitable. Seed vigor traits are sequentially acquired during development via genetic programs that are poorly understood, but known to be under the strong influence of environmental conditions. To investigate how light and temperature have an impact on the molecular mechanisms governing seed vigor at harvest, RNA sequencing was performed on Solanum lycopersicum cv. Moneymaker seed tissues (i.e. embryo and endosperm) that were dissected from fruits that were submitted to standard or high temperature and/or standard or dim light. The dataset encompassed a total of 26.5 Gb raw data from mature embryo and endosperm tissues transcriptomes. The raw and mapped reads data on build SL4.0 and annotation ITAG4.0 are available under accession GSE158641 at NCBI Gene Expression Omnibus (GEO) database. Data on seed vigor characteristics are presented together with the differentially expressed gene transcripts. GO and Mapman annotations were generated on ITAG4.0 to analyse this dataset and are provided for datamining future datasets.

7.
Plant Methods ; 16: 103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742300

RESUMO

BACKGROUND: Monitoring the timing of seedling emergence and early development via high-throughput phenotyping with computer vision is a challenging topic of high interest in plant science. While most studies focus on the measurements of leaf area index or detection of specific events such as emergence, little attention has been put on the identification of kinetics of events of early seedling development on a seed to seed basis. RESULT: Imaging systems screened the whole seedling growth process from the top view. Precise annotation of emergence out of the soil, cotyledon opening, and appearance of first leaf was conducted. This annotated data set served to train deep neural networks. Various strategies to incorporate in neural networks, the prior knowledge of the order of the developmental stages were investigated. Best results were obtained with a deep neural network followed with a long short term memory cell, which achieves more than 90% accuracy of correct detection. CONCLUSION: This work provides a full pipeline of image processing and machine learning to classify three stages of plant growth plus soil on the different accessions of two species of red clover and alfalfa but which could easily be extended to other crops and other stages of development.

8.
Nucleic Acids Res ; 39(7): e46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21266481

RESUMO

Enterococcus faecalis is a commensal bacterium and a major opportunistic human pathogen. In this study, we combined in silico predictions with a novel 5'RACE-derivative method coined '5'tagRACE', to perform the first search for non-coding RNAs (ncRNAs) encoded on the E. faecalis chromosome. We used the 5'tagRACE to simultaneously probe and characterize primary transcripts, and demonstrate here the simplicity, the reliability and the sensitivity of the method. The 5'tagRACE is complementary to tiling arrays or RNA-sequencing methods, and is also directly applicable to deep RNA sequencing and should significantly improve functional studies of bacterial RNA landscapes. From 45 selected loci of the E. faecalis chromosome, we discovered and mapped 29 novel ncRNAs, 10 putative novel mRNAs and 16 antisense transcriptional organizations. We describe in more detail the oxygen-dependent expression of one ncRNA located in an E. faecalis pathogenicity island, the existence of an ncRNA that is antisense to the ncRNA modulator of the RNA polymerase, SsrS and provide evidences for the functional interplay between two distinct toxin-antitoxin modules.


Assuntos
Enterococcus faecalis/genética , RNA Antissenso/genética , RNA não Traduzido/genética , Análise de Sequência de RNA , Toxinas Bacterianas/genética , Sequência de Bases , Sequência Conservada , Enterococcus faecalis/metabolismo , Loci Gênicos , Estresse Oxidativo , Peptídeos/genética , RNA Antissenso/análise , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA não Traduzido/análise , RNA não Traduzido/metabolismo , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...