Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 44(7): 768-775, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348967

RESUMO

BACKGROUND AND PURPOSE: While brain iron dysregulation has been observed in several neurodegenerative disorders, its association with the progressive neurodegeneration in Niemann-Pick type C is unknown. Systemic iron abnormalities have been reported in patients with Niemann-Pick type C and in animal models of Niemann-Pick type C. In this study, we examined brain iron using quantitative susceptibility mapping MR imaging in individuals with Niemann-Pick type C compared with healthy controls. MATERIALS AND METHODS: A cohort of 10 patients with adolescent- and adult-onset Niemann-Pick type C and 14 age- and sex-matched healthy controls underwent 7T brain MR imaging with T1 and quantitative susceptibility mapping acquisitions. A probing whole-brain voxelwise comparison of quantitative susceptibility mapping between groups was conducted. Mean quantitative susceptibility mapping in the ROIs (thalamus, hippocampus, putamen, caudate nucleus, and globus pallidus) was further compared. The correlations between regional volume, quantitative susceptibility mapping values, and clinical features, which included disease severity on the Iturriaga scale, cognitive function, and the Social and Occupational Functioning Assessment Scale, were explored as secondary analyses. RESULTS: We observed lower volume in the thalamus and voxel clusters of higher quantitative susceptibility mapping in the pulvinar nuclei bilaterally in patients with Niemann-Pick type C compared with the control group. In patients with Niemann-Pick type C, higher quantitative susceptibility mapping in the pulvinar nucleus clusters correlated with lower volume of the thalamus on both sides. Moreover, higher quantitative susceptibility mapping in the right pulvinar cluster was associated with greater disease severity. CONCLUSIONS: Our findings suggest iron deposition in the pulvinar nucleus in Niemann-Pick type C disease, which is associated with thalamic atrophy and disease severity. This preliminary evidence supports the link between iron and neurodegeneration in Niemann-Pick type C, in line with existing literature on other neurodegenerative disorders.


Assuntos
Ferro , Doença de Niemann-Pick Tipo C , Humanos , Encéfalo/diagnóstico por imagem , Tálamo , Cognição , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
2.
Cereb Cortex ; 29(4): 1584-1593, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29701751

RESUMO

Progress in neurodevelopmental brain research has been achieved through the use of animal models. Such models not only help understanding biological changes that govern brain development, maturation and aging, but are also essential for identifying possible mechanisms of neurodevelopmental and age-related chronic disorders, and to evaluate possible interventions with potential relevance to human disease. Genetic relationship of rhesus monkeys to humans makes those animals a great candidate for such models. With the typical lifespan of 25 years, they undergo cognitive maturation and aging that is similar to this observed in humans. Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking white matter brain maturation and aging. While lifespan trajectories of white matter changes have been mapped in humans, such knowledge is not available for nonhuman primates. Here, we analyze and model lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys. We report quantitative parameters (including slopes and peaks) of lifespan trajectories for 8 individual white matter tracts. We show different trajectories for cellular and extracellular microstructural imaging components that are associated with white matter maturation and aging, and discuss similarities and differences between those in humans and rhesus monkeys, the importance of our findings, and future directions for the field. Significance Statement: Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking brain maturation and aging. While lifespan trajectories of structural white matter changes have been mapped in humans, such knowledge is not available for rhesus monkeys. We present here results of the analysis and modeling of the lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys (age 4-27). We report and anatomically map lifespan changes related to cellular and extracellular microstructural components that are associated with white matter maturation and aging.


Assuntos
Encéfalo/crescimento & desenvolvimento , Longevidade/fisiologia , Substância Branca/crescimento & desenvolvimento , Animais , Imagem de Tensor de Difusão , Feminino , Macaca mulatta , Masculino , Modelos Neurológicos
3.
Mol Psychiatry ; 23(3): 701-707, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28348381

RESUMO

Free Water Imaging is a novel diffusion magnetic resonance (MR) imaging method that is able to separate changes affecting the extracellular space from those that reflect changes in neuronal cells and processes. A previous Free Water Imaging study in schizophrenia identified significantly greater extracellular water volume in the early stages of the disorder; however, its clinical and functional sequelae have not yet been investigated. Here, we applied Free Water Imaging to a larger cohort of 63 first-episode patients with psychosis and 70 healthy matched controls to better understand the functional significance of greater extracellular water. We used diffusion MR imaging data and the Tract-Based Spatial Statistics analytic pipeline to first analyze fractional anisotropy (FA), the most commonly employed metric for assessing white matter. This comparison was then followed by Free Water Imaging analysis, where two parameters, the fractional volume of extracellular free-water (FW) and cellular tissue FA (FA-t), were estimated and compared across the entire white matter skeleton between groups, and correlated with cognitive measures at baseline and following 12 weeks of antipsychotic treatment. Our results indicated lower FA across the whole brain in patients compared with healthy controls that overlap with significant increases in FW, with only limited decreases in FA-t. In addition, higher FW correlated with better neurocognitive functioning following 12 weeks of antipsychotic treatment. We believe this is the first study to suggest that an extracellular water increase during the first-episode of psychosis, which may be indicative of an acute neuroinflammatory process, and/or cerebral edema may predict better functional outcome.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Adulto , Antipsicóticos/uso terapêutico , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Espaço Extracelular/diagnóstico por imagem , Feminino , Previsões/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Transtornos Neurocognitivos/diagnóstico por imagem , Esquizofrenia/patologia , Resultado do Tratamento , Água/análise , Substância Branca/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...