Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 12(3): 3395-3409, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35908255

RESUMO

BACKGROUND: Growing prevalence and aggressiveness of breast cancer (BC) among East African women strongly indicate that the genetic risk factor implicated in the etiology of the disease may have a key role. Germline pathogenic variants in BRCA1 and BRCA2 (BRCA1/2) are known to increase the lifetime risk of BC. This study investigated the prevalence and spectrum of germline single nucleotide variant/insertion and deletion (SNV/indel), and copy number variations (CNVs) in BRCA1/2 among Tanzanian BC patients, and evaluated the associations of identified variants with patient's socio-demographic and histopathological characteristics. METHODS: One hundred BC patients were examined for BRCA1/2 variants using next-generation sequencing (NGS). Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) assay were performed for the confirmation of SNV/indel and CNVs, respectively. RESULTS: Six germline SNV/indel pathogenic variants were detected from six unrelated patients. Five of these variants were identified in BRCA1, and one in BRCA2. We also identified, in one patient, one variant of uncertain clinical significance (VUS). CNV was not detected in any of the BC patients. Furthermore, we found that in our cohort, BRCA1/2 variant carriers were triple-negative BC patients (p = 0.019). CONCLUSIONS: Our study provides first insight into BC genetic landscape by the use of NGS in the under-represented East African Tanzanian populations. Our findings support the importance of genetic risk factors in BC etiology in Tanzania and showed a relatively high overall prevalence (6%) of germline BRCA1/2 pathogenic variants in BC patients. Therefore, our results indicate that BRCA1/2 pathogenic variants may well contribute to BC incidence in Tanzania. Thus, the identification of frequent variants in BRCA1/2 genes will enable implementation of rapid, inexpensive population-specific BRCA1/2 genetic testing, particularly for triple-negative BC patients known for their high prevalence in Tanzania. This will, in turn, greatly contributes to provide effective therapeutic strategies.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Genes BRCA2 , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA , Tanzânia , Prevalência , Predisposição Genética para Doença , Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Neoplasias de Mama Triplo Negativas/genética , Proteína BRCA2/genética
2.
Cancer Med ; 12(1): 472-487, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691022

RESUMO

BACKGROUND: Reproductive history and genetics are well-known risk factors of breast cancer (BC). Little is known about how these factors interact to effect BC. This study investigated the association of ten polymorphisms in DNA repair genes with BC susceptibility in the Tanzanian samples and further analyzed the association between reproductive risk factors and disease risk METHODS: A hospital-based case-control study in 263 histopathological confirmed BC patients and 250 age-matched cancer-free controls was carried out. Allelic, genotypic, and haplotype association analyses were executed. Also, multifactor dimensionality reduction (MDR), and interaction dendrogram approaches were performed. RESULTS: The frequency of genotypic and allelic variants of XRCC1-Arg399Gln (rs25487), XRCC2-Arg188His (rs3218536), XRCC3-Thr241Met (rs861539), XPG-Asp1104His (rs17655), and MSH2-Gly322Asp (rs4987188) were significantly different between the groups (p < 0.05). Moreover, XRCC1-Arg399Gln (rs25487), XRCC3-Thr241Met (rs861539), and XPG-Asp1104His (rs17655) were associated with the increased risk of BC in co-dominant, dominant, recessive, and additive genetic-inheritance models (p < 0.05). XRCC1-Arg/Gln genotype indicated a 3.1-fold increased risk of BC in pre-menopausal patients (p = 0.001) while XPG-His/His genotype showed a 1.2-fold increased risk in younger BC patients (<40 years) (p = 0.028). Asp/His+His/His genotypes indicated a 1.3-fold increased risk of BC in PR+ patients and a 1.1-fold decreased risk of BC in luminal-A patients (p = 0.014, p = 0.020, respectively). MDR analysis revealed a positive interaction between BC and the XPG-Asp1104His (rs17655) together with family history of cancer in the first-degree relatives. Dendrogram analysis indicated that the XPG-Asp1104His (rs17655) and family history of cancer in first-degree relatives were significantly synergistic and might be associated with an elevated risk of BC in Tanzania. CONCLUSIONS: The XPG-Asp1104His (rs17655) might exert both independent and interactive effects on BC development in the Tanzanian women.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Tanzânia/epidemiologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , História Reprodutiva , Estudos de Casos e Controles , Fatores de Risco , Genótipo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Reparo do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteínas de Ligação a DNA/genética
3.
Infect Genet Evol ; 98: 105219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066168

RESUMO

Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV) are the two among six virus species speculated to cause the most catastrophic Brown Streak Disease of Cassava (CBSD) in Africa and Asia. Cassava Brown Streak Virus (CBSV) is hard to breed resistance for compared to Ugandan Cassava Brown Streak Virus (UCBSV) species. This is exemplified by incidences of CBSV species rather than UCBSV species in elite breeding line, KBH 2006/0026 at Bagamoyo, Tanzania. It is not yet understood as to why CBSV species could breakdown CBSD-resistance in the KBH 2006/0026 unlike the UCBSV species. This marks the first in silico study conducted to understand molecular basis for the trait discrepancy between CBSV and UCBSV species from structural biology view point. Following ab initio modelling and analysis of physical-chemical properties of second 6-kilodalton (6K2) protein encoded by CBSV and UCBSV species, using ROBETTA server and Protein Parameters tool, respectively we report that; three dimensional (3D) structures and polarity of the protein differs significantly between the two virus species. (95% and 5%) and (85% and 15%) strains of 20 CBSV and 20 UCBSV species respectively, expressed the protein in homo-trimeric and homo-tetrameric forms, correspondingly. 95% and 85% of studied strain population of the two virus species expressed hydrophilic and hydrophobic 6K2, respectively. Based on findings of the curent study, we hypothesize that; (i) The hydrophilic 6K2 expressed by the CBSV species, favour its faster systemic movement via vascular tissues of cassava host and hence result into higher tissue titres than the UCBSV species encoding hydrophobic form of the protein. t and (ii) The hydrophilic 6K2 expressed byCBSV species have additional interaction advantage with Nuclear Inclusion b protease domain (NIb) and Viral genome-linked protein (VPg), components of Virus Replication Complex (VRC) and hence contributing to faster replication of viral genome than the hydrophobic 6K2 expressed by the UCBSV species. Experimental studies are needed to resolve the 3D structures of the 6K2, VPg and NIb and comprehend complex molecular interactions between them. We suggest that, the 6K2 gene should be targeted for improvement of RNA interference (RNAi)-directed transgenesis of virus-resistant cassava as a more effective way to control the CBSD besides breeding.


Assuntos
Potyviridae/genética , Proteínas Virais/química , Conformação Molecular , Potyviridae/química , Especificidade da Espécie
4.
BMC Womens Health ; 21(1): 423, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930226

RESUMO

BACKGROUND: Recent epidemiological studies suggest that reproductive factors are associated with breast cancer (BC) molecular subtypes. However, these associations have not been thoroughly studied in the African populations. The present study aimed to investigate the prevalence of BC molecular subtypes and assess their association with reproductive factors in Tanzanian BC patients. METHODS: This hospital-based case-only cross-sectional study consisted of 263 histologically confirmed BC patients in Tanzania. Clinico-pathological data, socio-demographic characteristics, anthropometric measurements, and reproductive risk factors were examined using the Chi-square test and one-way ANOVA. The association among reproductive factors and BC molecular subtypes was analyzed using multinomial logistic regression. The heterogeneity of the associations was assessed using the Wald test. RESULTS: We found evident subtype heterogeneity for reproductive factors. We observed that post-menopausal status was more prevalent in luminal-A subtype, while compared to luminal-A subtype, luminal-B and HER-2 enriched subtypes were less likely to be found in post-menopausal women (OR: 0.21, 95%CI 0.10-0.41, p = 0.001; OR: 0.39, 95%CI 0.17-0.89, p = 0.026, respectively). Also, the luminal-B subtype was more likely to be diagnosed in patients aged ≤ 40 years than the luminal-A subtype (OR: 2.80, 95%CI 1.46-5.32, p = 0.002). Women who had their first full-term pregnancy at < 30 years were more likely to be of luminal-B (OR: 2.71, 95%CI 1.18-4.17, p = 0.018), and triple-negative (OR: 2.28, 95%CI 1.02-4.07, p = 0.044) subtypes relative to luminal-A subtype. Furthermore, we observed that breastfeeding might have reduced odds of developing luminal-A, luminal-B and triple-negative subtypes. Women who never breastfed were more likely to be diagnosed with luminal-B and triple-negative subtypes when compared to luminal-A subtype (OR: 0.46, 95%CI 0.22-0.95, p = 0.035; OR: 0.41, 95%CI 0.20-0.85, p = 0.017, respectively). . CONCLUSION: Our results are the first data reporting reproductive factors heterogeneity among BC molecular subtypes in Tanzania. Our findings suggest that breast-feeding may reduce the likelihood of developing luminal-A, luminal-B, and triple-negative subtypes. Meanwhile, the first full-term pregnancy after 30 years of age could increase the chance of developing luminal-A subtype, a highly prevalent subtype in Tanzania. More interventions to promote modifiable risk factors across multiple levels may most successfully reduce BC incidence in Africa.


Assuntos
Neoplasias da Mama , Adulto , Neoplasias da Mama/diagnóstico , Estudos Transversais , Feminino , Humanos , Razão de Chances , Gravidez , Receptor ErbB-2 , Receptores de Progesterona , Fatores de Risco , Tanzânia/epidemiologia
5.
Can Respir J ; 2021: 9621572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457096

RESUMO

Asthmatics are at an increased risk of developing exacerbations after being infected by respiratory viruses such as influenza virus, parainfluenza virus, and human and severe acute respiratory syndrome coronaviruses (SARS-CoV). Asthma, especially when poorly controlled, is an independent risk factor for developing pneumonia. A subset of asthmatics can have significant defects in their innate, humoral, and cell-mediated immunity arms, which may explain the increased susceptibility to infections. Adequate asthma control is associated with a significant decrease in episodes of exacerbation. Because of their wide availability and potency to promote adequate asthma control, glucocorticoids, especially inhaled ones, are the cornerstone of asthma management. The current COVID-19 pandemic affects millions of people worldwide and possesses mortality several times that of seasonal influenza; therefore, it is necessary to revisit this subject. The pathogenesis of SARS-CoV-2, the virus that causes COVID-19, can potentiate the development of acute asthmatic exacerbation with the potential to worsen the state of chronic airway inflammation. The relationship is evident from several studies that show asthmatics experiencing a more adverse clinical course of SARS-CoV-2 infection than nonasthmatics. Recent studies show that dexamethasone, a potent glucocorticoid, and other inhaled corticosteroids significantly reduce morbidity and mortality among hospitalized COVID-19 patients. Hence, while we are waiting for more studies with higher level of evidence that further narrate the association between COVID-19 and asthma, we advise clinicians to try to achieve adequate disease control in asthmatics as it may reduce incidences and severity of exacerbations especially from SARS-CoV-2 infection.


Assuntos
Asma/complicações , Asma/prevenção & controle , COVID-19/complicações , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , COVID-19/mortalidade , COVID-19/terapia , Humanos
6.
Infect Genet Evol ; 94: 105001, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271188

RESUMO

Effective control of ipomoviruses that cause cassava brown streak disease (CBSD) in Africa has remained problematic despite eight remarkable decades (1930-2021) of research efforts. Molecular mechanisms underlying resistance breakdown in genetically improved cassava are still unknown. The vast genetic diversity of cassava brown streak viruses, which is crucial for the improvement of routine reverse transcription polymerase chain reaction (RT-qPCR) assays in CBSD-endemic regions of Africa, is controversial and underrepresented. From a molecular epidemiology viewpoint, this review discusses the reasons for why permanent control of CBSD is difficult in the modern era, even with the presence of diverse in silico and omics tools, recombinant DNA, and high throughput next-generation sequencing technologies. Following an extensive nucleotide data search in the National Centre for Biotechnology Information (NCBI) database and a literature review in PubMed and Scopus, we report that genomic data of 87.62% (474/541) strains of cassava brown streak virus are missing due to poor sequencing capacity in Africa. The evolution dynamics of viral virulence and pathogenicity has not yet been fully explored from the available 67 (12.38%) genomic sequences, owing to poor bioinformatics capacity. Tanzania and Zambia have the highest and lowest disease inoculum pressure, correspondingly. Knowledge gaps in molecular biology and the overall molecular pathogenesis of CBSD viruses impede effective disease control in Africa. Recommendations for possible solutions to the research questions, controversies, and hypotheses raised in this study serve as a roadmap for the invention of more effective CBSD control methods.


Assuntos
Doenças das Plantas/prevenção & controle , Potyviridae/fisiologia , África Subsaariana , Manihot/virologia
7.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888498

RESUMO

The genus Limnospira includes cyanobacterial species used for industrial production of dietary supplements and nutraceutical agents. The metagenome-assembled genome of Limnospira sp. strain BM01 from Big Momela Lake, Tanzania, was 6,228,312 bp long with a GC content of 44.8% and carried 4,921 proteins and 52 RNA genes, including 6 rRNA genes.

8.
Int J Gynaecol Obstet ; 154(2): 318-323, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33277704

RESUMO

OBJECTIVE: To determine factors associated with risk of preterm delivery among pregnant women delivering at Muhimbili National Hospital in Tanzania. METHODS: A 1:1 case-control study was conducted to assess maternal sociodemographic, lifestyle, and current and previous obstetric factors associated with risk of preterm delivery. Mothers of preterm infants were regarded as cases and those of term infants were controls. Chi-square test and logistic regression were used to assess association between the factors and risk of preterm delivery. RESULTS: A total of 222 case-control pairs were studied. Maternal type of employment (P = 0.039), previous preterm delivery (P = 0.002), previous spontaneous abortion (P = 0.004), uterine scar (P < 0.001), parity (P = 0.034), number of prenatal care visits (P = 0.032), premature rupture of membranes (PROM) (P < 0.001), placenta previa (P = 0.002), bleeding during second trimester (P = 0.004), pre-eclampsia (P < 0.001), and maternal anemia (P = 0.033) were associated with risk of preterm delivery. The main risk factors associated with preterm delivery included previous preterm delivery (odds ratio [OR] 13.23, 95% confidence interval [CI] 1.72-101.95), placenta previa (OR 12.63, 95% CI 1.63-97.98), and PROM (OR 8.77, 95% CI 1.33-4.60). CONCLUSION: Close monitoring of pregnant women who present any of the risk factors is important to prevent or reduce the risk of preterm delivery in Tanzania.


Assuntos
Ruptura Prematura de Membranas Fetais/epidemiologia , Placenta Prévia/epidemiologia , Nascimento Prematuro/etiologia , Aborto Induzido/efeitos adversos , Aborto Espontâneo/epidemiologia , Adulto , Estudos de Casos e Controles , Feminino , Hospitais , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Paridade , Pré-Eclâmpsia/epidemiologia , Gravidez , Segundo Trimestre da Gravidez , Cuidado Pré-Natal , Fatores de Risco , Tanzânia , Adulto Jovem
9.
Appl Microbiol Biotechnol ; 104(17): 7643-7656, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32651600

RESUMO

The application of biocontrol biopesticides based on plant growth-promoting rhizobacteria (PGPR), particularly members of the genus Bacillus, is considered a promising perspective to make agricultural practices sustainable and ecologically safe. Recent advances in genome sequencing by third-generation sequencing technologies, e.g., Pacific Biosciences' Single Molecule Real-Time (PacBio SMRT) platform, have allowed researchers to gain deeper insights into the molecular and genetic mechanisms of PGPR activities, and to compare whole genome sequences and global patterns of epigenetic modifications. In the current work, this approach was used to sequence and compare four Bacillus strains that exhibited various PGPR activities including the strain UCMB5140, which is used in the commercial biopesticide Phytosubtil. Whole genome comparison and phylogenomic inference assigned the strain UCMB5140 to the species Bacillus velezensis. Strong biocontrol activities of this strain were confirmed in several bioassays. Several factors that affect the evolution of active PGPR B. velezensis strains were identified: (1) horizontal acquisition of novel non-ribosomal peptide synthetases (NRPS) and adhesion genes; (2) rearrangements of functional modules of NRPS genes leading to strain specific combinations of their encoded products; (3) gain and loss of methyltransferases that can cause global alterations in DNA methylation patterns, which eventually may affect gene expression and regulate transcription. Notably, we identified a horizontally transferred NRPS operon encoding an uncharacterized polypeptide antibiotic in B. velezensis UCMB5140. Other horizontally acquired genes comprised a possible adhesin and a methyltransferase, which may explain the strain-specific methylation pattern of the chromosomal DNA of UCMB5140. KEY POINTS: • Whole genome sequence of the active PGPR Bacillus velezensis UCMB5140. • Identification of genetic determinants responsible for PGPR activities. • Role of methyltransferases and epigenetic mechanisms in evolution of bacteria.


Assuntos
Bacillus , Proteção de Cultivos , Bacillus/genética , Epigênese Genética , Genoma Bacteriano
10.
Antibiotics (Basel) ; 9(5)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375367

RESUMO

"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.

11.
J Pathog ; 2020: 5187578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328309

RESUMO

Newcastle disease (ND) control by vaccination and an institution of biosecurity measures is less feasible in backyard chicken in developing countries. Therefore, an alternative disease control strategy like the genetic selection of less susceptible chicken genotypes is a promising option. In the present study, genetic polymorphism of LEIO258 marker and association with susceptibility to virulent Newcastle disease virus (NDV) infection in Kuroilers, Sasso, and local Tanzanian chicken embryos were investigated. Samples from high (15%) and less (15%) susceptible cohorts were genotyped by sequencing of LEI0258 marker. A total of 75 DNA sequences comprised of 29 Kuroiler, 29 local Tanzanian chickens, and 17 Sasso were analyzed. Neighbor-joining phylogenetic trees were constructed to depict the clustering of LEI0258 marker alleles and relationship with susceptibility. Alleles with frequency ≥3 were considered for association with susceptibility by the use of the inference technique. The present findings suggest that some LEI0258 marker genetic polymorphisms apart from LEI0258 marker allelic based on sizes may be linked with chicken MHC-B haplotypes that confer chickens variability in resistance or susceptibility to infections. Furthermore, these results demonstrate the presence of relationship between LEI0258 marker polymorphisms and variations in chicken susceptibility to NDV infection, which could be utilized in breeding programs designed to improve chicken disease resistance.

12.
J Nematol ; 52: 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180386

RESUMO

Banana (Musa spp. L.) is an important staple food and cash crop for about 30% of the population in Tanzania; however, the burrowing plant-parasitic nematode Radopholus similis causes black head disease and toppling in banana plants, which results in yield losses. We collected and identified 80 specimens of R. similis from four agro-ecological zones in Tanzania using morphological characters. We then used universal and specific R. similis primers to amplify the small subunit, internal transcribed spacer and large subunit of ribosomal DNA regions of these specimens. The amplicons were subsequently sequenced and analyzed using Bayesian inference. We identified two major clades, one that comprised all R. similis sequences derived from this study and another that included R. similis and Radopholus spp. sequences obtained from GenBank, indicating the separation of this species from congeneric sequences. Our findings provide a useful, simple and rapid method for identifying burrowing nematodes. This outcome could contribute to the development of permanent, integrated pest management strategies for the control of R. similis in banana and other crops in order to reduce associated yield losses in Tanzania. To our knowledge, this is the first study of nematodes to use combined morphological and molecular methods for the identification of R. similis in Tanzania.Banana (Musa spp. L.) is an important staple food and cash crop for about 30% of the population in Tanzania; however, the burrowing plant-parasitic nematode Radopholus similis causes black head disease and toppling in banana plants, which results in yield losses. We collected and identified 80 specimens of R. similis from four agro-ecological zones in Tanzania using morphological characters. We then used universal and specific R. similis primers to amplify the small subunit, internal transcribed spacer and large subunit of ribosomal DNA regions of these specimens. The amplicons were subsequently sequenced and analyzed using Bayesian inference. We identified two major clades, one that comprised all R. similis sequences derived from this study and another that included R. similis and Radopholus spp. sequences obtained from GenBank, indicating the separation of this species from congeneric sequences. Our findings provide a useful, simple and rapid method for identifying burrowing nematodes. This outcome could contribute to the development of permanent, integrated pest management strategies for the control of R. similis in banana and other crops in order to reduce associated yield losses in Tanzania. To our knowledge, this is the first study of nematodes to use combined morphological and molecular methods for the identification of R. similis in Tanzania.

13.
Front Microbiol ; 10: 2610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803155

RESUMO

Bacillus velezensis strains are applied as ecologically safe biopesticides, plant growth promoting rhizobacteria (PGPR), and in veterinary probiotics. They are abundant in various environments including soil, plants, marine habitats, the intestinal micro-flora, etc. The mechanisms underlying this adaptive plasticity and bioactivity are not well understood, nor is it clear why several strains outperform other same species isolates by their bioactivities. The main objective of this work was to demonstrate versatility of bioactivities and lifestyle strategies of the selected B. velezensis strains suitable to serve as model organisms in future studies. Here, we performed a comparative study of newly sequenced genomes of four B. velezensis isolates with distinct phenotypes and isolation origin, which were assessed by RNA sequencing under the effect of root exudate stimuli and profiled by epigenetic modifications of chromosomal DNA. Among the selected strains, UCMB5044 is an oligotrophic PGPR strain adapted to nutrient poor desert soils. UCMB5113 and At1 are endophytes that colonize plants and require nutrient rich media. In contrast, the probiotic strain, UCMB5007, is a copiotroph, which shows no propensity to colonize plants. PacBio and Illumina sequencing approaches were used to generate complete genome assemblies, tracing epigenetic modifications, and determine gene expression profiles. All sequence data was deposited at NCBI. The strains, UCMB5113 and At1, show 99% sequence identity and similar phenotypes despite being isolated from geographically distant regions. UCMB5007 and UCMB5044 represent another group of organisms with almost identical genomes but dissimilar phenotypes and plant colonization propensity. The two plant associated strains, UCMB5044 and UCMB5113, share 398 genes putatively associated with root colonization, which are activated by exposure to maize root exudates. In contrast, UCMB5007 did not respond to root exudate stimuli. It was hypothesized that alterations in the global methylation pattern and some other epigenetic modifications enable adaptation of strains to different habitats and therefore may be of importance in terms of the biotechnological applicability of these bacteria. Contrary, the ability to grow on root exudates as a sole source of nutrients or a strong antagonism against phytopathogens showed by the strains in vitro cannot be considered as good predictors of PGPR activities.

14.
BMC Public Health ; 19(1): 1456, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694595

RESUMO

BACKGROUND: Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l. METHODS: A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2-3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test. RESULTS: Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures. CONCLUSION: The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).


Assuntos
Agricultura/estatística & dados numéricos , Doenças Endêmicas/prevenção & controle , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Fazendeiros/estatística & dados numéricos , Humanos , Larva/efeitos dos fármacos , Malária/epidemiologia , Tanzânia/epidemiologia
15.
Biomed Res Int ; 2019: 1486072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687378

RESUMO

Newcastle disease is a devastating viral disease of chicken in low- and middle-income countries where the backyard production system is predominant. Marker-assisted selection of chickens that are resistant to Newcastle disease virus (NDV) is the promising strategy that needs to be explored. The aim of the present study was to investigate polymorphisms of the promoter region of the chicken Mx gene and association with Kuroiler, Sasso, and local Tanzanian chicken embryos' survival variability to virulent NDV infection. Chicken embryos were initially challenged with a minimum lethal dose of virulent NDV suspension and then were followed over time to gather information on their survival variability. Using the survival data, high and less susceptible cohorts were established, and a total of 88 DNA samples from high and less susceptible groups were genotypes by sequencing. Five single-nucleotide polymorphisms (SNPs), which were previously reported, were detected. Interestingly, for the first time, the findings demonstrated the association of the promoter region of chicken myxovirus-resistance (Mx) gene polymorphisms with chicken embryos' susceptibility to the virulent NDV challenge. At the genotypic level, the SNP4 G > A mutation that was located within the IFN-stimulating response element was associated (LR: 6.97, P=0.03) with chicken embryos' susceptibility to the virulent NDV challenge. An allele G frequency was higher in the less susceptible cohort, whereas an allele A frequency was higher in the high susceptible cohort. At the haplotype level, the haplotype group ACGC was associated (OR: 9.8, 95% CI: 1.06-79.43, P=0.042) with the same trait and had a resistant effect. In conclusion, the results have demonstrated the association of chicken Mx gene promoter polymorphisms and chicken embryos' survival variability to the virulent NDV challenge, and the information is useful for breeding programs designed to develop chicken genotypes that are resistant to Newcastle disease virus.


Assuntos
Embrião de Galinha/virologia , Doença de Newcastle/genética , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Virulência/genética , Alelos , Animais , Sobrevivência Celular/genética , Galinhas/virologia , Frequência do Gene/genética , Genótipo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Polimorfismo de Nucleotídeo Único/genética , Doenças das Aves Domésticas/etiologia
16.
Trop Med Int Health ; 22(4): 388-398, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28168834

RESUMO

OBJECTIVE: To assess the susceptibility status of malaria vectors to pyrethroids and dichlorodiphenyltrichloroethane (DDT), characterise the mechanisms underlying resistance and evaluate the role of agro-chemical use in resistance selection among malaria vectors in Sengerema agro-ecosystem zone, Tanzania. METHODS: Mosquito larvae were collected from farms and reared to obtain adults. The susceptibility status of An. gambiae s.l. was assessed using WHO bioassay tests to permethrin, deltamethrin, lambdacyhalothrin, etofenprox, cyfluthrin and DDT. Resistant specimens were screened for knock-down resistance gene (kdr), followed by sequencing both Western and Eastern African variants. A gas chromatography-mass spectrophotometer (GC-MS) was used to determine pesticide residues in soil and sediments from mosquitoes' breeding habitats. RESULTS: Anopheles gambiae s.l. was resistant to all the insecticides tested. The population of Anopheles gambiae s.l was composed of Anopheles arabiensis by 91%. The East African kdr (L1014S) allele was found in 13 of 305 specimens that survived insecticide exposure, with an allele frequency from 0.9% to 50%. DDTs residues were found in soils at a concentration up to 9.90 ng/g (dry weight). CONCLUSION: The observed high resistance levels of An. gambiae s.l., the detection of kdr mutations and pesticide residues in mosquito breeding habitats demonstrate vector resistance mediated by pesticide usage. An integrated intervention through collaboration of agricultural, livestock and vector control units is vital.


Assuntos
Anopheles/efeitos dos fármacos , DDT/farmacologia , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Malária/transmissão , Praguicidas/farmacologia , Piretrinas/farmacologia , Agricultura , Animais , Anopheles/genética , Ecossistema , Genes de Insetos , Humanos , Insetos Vetores/genética , Inseticidas/farmacologia , Mutação , Nitrilas/farmacologia , Permetrina/farmacologia , Resíduos de Praguicidas , Solo/química , Especificidade da Espécie , Tanzânia
17.
Gene ; 590(1): 18-28, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27259668

RESUMO

Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.


Assuntos
Bacillus/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Raízes de Plantas/microbiologia , RNA não Traduzido/genética , Rhizobiaceae/genética , Bacillus/classificação , Bacillus/metabolismo , Bacillus amyloliquefaciens/classificação , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Loci Gênicos , Filogenia , RNA não Traduzido/metabolismo , Rhizobiaceae/classificação , Rhizobiaceae/metabolismo , Rizosfera , Análise de Sequência de RNA , Simbiose , Zea mays/microbiologia
18.
Genome Res ; 26(2): 271-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26627985

RESUMO

The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet.


Assuntos
População Negra/genética , Promoção da Saúde , África , Biologia Computacional , Sistemas Computacionais , Variação Genética , Genética Médica , Genômica , Humanos
19.
Cancer Chemother Pharmacol ; 63(1): 127-38, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18350297

RESUMO

INTRODUCTION: Cisplatin (cis-diamminedichloroplatinum) was first identified for its anti-bacterial activity, and was later also shown to be an efficient anticancer agent. However, the therapeutic use of this anticancer drug is somewhat limited by its toxic side effects, which include nephrotoxicity, nausea, and vomiting. Furthermore the development of drug-resistant tumours is commonly observed following therapy with cisplatin. Hence there is a need for improved platinum derived drugs to overcome these limitations. AIMS: Apoptosis contributes significantly to the cytotoxic effects of anticancer agents such as cisplatin; therefore in this study the potential anticancer properties of a series of pyrazole palladium(II) and platinum(II) complexes, [(3,5-R(2)pz)(2)PdCl(2)] [R = H (1), R = Me (2)] and [(3,5-R(2)pz)(2)PtCl(2)] [R = H (3), R = Me (4)], were evaluated by assessment of their pro-apoptotic activity. METHODS: The induction of apoptosis was measured in CHO cells by the detection of phosphatidylserine (PS) exposure using the annexin V and APOPercentage assays; DNA fragmentation using the Terminal deoxynucleotide transferase dUTP Nick End Labelling (TUNEL) assay; and the detection of activated caspase-3. RESULTS: The platinum complexes were shown to be considerably more active than the palladium complexes, with complex 3 demonstrating the highest level of cytotoxic and pro-apoptotic activity. The LD(50) values for complex 3 and cisplatin were 20 and 70 microM, respectively, demonstrating that the cytotoxic activity for complex 3 was three times higher than for cisplatin. Various human cancer cell lines, including CaSki, HeLa, as well as the p53 mutant Jurkat T cell line were also shown to be susceptible to complex 3. CONCLUSIONS: Collectively, this in vitro study provides insights into action of palladium and platinum complexes and demonstrates the potential use of these compounds, and in particular complex 3, in the development of new anticancer agents.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organoplatínicos/farmacologia , Animais , Células CHO/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Células HeLa/efeitos dos fármacos , Humanos , Técnicas In Vitro , Células Jurkat/efeitos dos fármacos , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organoplatínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...