Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493352

RESUMO

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.

2.
Nucleic Acids Res ; 52(D1): D311-D321, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37602392

RESUMO

Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.


Assuntos
Bases de Dados Genéticas , Telomerase , Motivos de Nucleotídeos , Plantas/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo
3.
J Exp Bot ; 75(3): 1036-1050, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37831920

RESUMO

Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ânions/metabolismo , Sulfatos/metabolismo , Glutationa/metabolismo , Enxofre/metabolismo , Fosfatos/metabolismo , Glucosinolatos , Regulação da Expressão Gênica de Plantas
4.
Methods Mol Biol ; 2672: 285-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335484

RESUMO

Telomeres are essential nucleoprotein structures at the very ends of linear eukaryote chromosomes. They shelter the terminal genome territories against degradation and prevent the natural chromosome ends from being recognized by repair mechanisms as double-strand DNA breaks.There are two basic characteristics of telomeric DNA, its sequence and its length. The telomere sequence is important as a "landing area" for specific telomere-binding proteins, which function as signals and moderate the interactions required for correct telomere function. While the sequence forms the proper "landing surface" of telomeric DNA, its length is similarly important. Too short or exceptionally long telomere DNA cannot perform its function properly. In this chapter, methods for the investigation of these two basic telomere DNA characteristics are described, namely, telomere motif identification and telomere length measurement.


Assuntos
DNA , Telômero , DNA/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Quebras de DNA de Cadeia Dupla
5.
J Hazard Mater ; 445: 130527, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495640

RESUMO

Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.


Assuntos
Arabidopsis , Fitoquelatinas , Cádmio/toxicidade , Nicotiana , Sulfatos/farmacologia , Glucosinolatos/farmacologia , Nutrientes , Suplementos Nutricionais , Raízes de Plantas
6.
BMC Bioinformatics ; 22(1): 145, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752601

RESUMO

BACKGROUND: Telomeres, nucleoprotein structures comprising short tandem repeats and delimiting the ends of linear eukaryotic chromosomes, play an important role in the maintenance of genome stability. Therefore, the determination of the length of telomeres is of high importance for many studies. Over the last years, new methods for the analysis of the length of telomeres have been developed, including those based on PCR or analysis of NGS data. Despite that, terminal restriction fragment (TRF) method remains the gold standard to this day. However, this method lacks universally accepted and precise tool capable to analyse and statistically evaluate TRF results. RESULTS: To standardize the processing of TRF results, we have developed WALTER, an online toolset allowing rapid, reproducible, and user-friendly analysis including statistical evaluation of the data. Given its web-based nature, it provides an easily accessible way to analyse TRF data without any need to install additional software. CONCLUSIONS: WALTER represents a major upgrade from currently available tools for the image processing of TRF scans. This toolset enables a rapid, highly reproducible, and user-friendly evaluation of almost any TRF scan including in-house statistical evaluation of the data. WALTER platform together with user manual describing the evaluation of TRF scans in detail and presenting tips and troubleshooting, as well as test data to demo the software are available at https://www.ceitec.eu/chromatin-molecular-complexes-jiri-fajkus/rg51/tab?tabId=125#WALTER and the source code at https://github.com/mlyc93/WALTER .


Assuntos
Software , Telômero , Telômero/genética
7.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008793

RESUMO

Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.


Assuntos
Arabidopsis/metabolismo , Telomerase/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA/genética , Ribossomos/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Transcrição Gênica
8.
J Psychiatr Res ; 117: 7-14, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255955

RESUMO

Telomeres, nucleoprotein structures at the ends of eukaryotic chromosomes, are crucial for the maintenance of genome integrity. While the lengths of telomeres at birth are determined genetically, many factors including environmental and living conditions affect the telomere lengths during a lifespan. In this context, extreme and long-term stress has been shown to negatively impact telomeres and their protective function, with even offspring being influenced by the stress experienced by parents. Using quantitative PCR, the relative lengths of telomeres of survivors of the Holocaust during World War II and two generations of their offspring were analyzed. These data were related to those of control groups, persons of comparable age without a strong life stress experience. In contrast to previous studies of other stress-exposed groups, the relative lengths of telomeres were comparable in groups of persons exposed to Holocaust-related stress and their progenies, and in control groups. Interestingly, shorter telomeres of Holocaust survivors of the age under 12 in the year 1945 compared to Holocaust survivors of the age above 12 were detected. Our results are discussed with respect to certain exceptionality of persons having been able to cope with an extreme stress more than 70 years ago and living to a very old age.


Assuntos
Adaptação Psicológica/fisiologia , Filhos Adultos , Adultos Sobreviventes de Eventos Adversos na Infância , Envelhecimento/fisiologia , Holocausto , Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Sobreviventes , Homeostase do Telômero/fisiologia , Encurtamento do Telômero/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...