Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737275

RESUMO

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.

2.
Am J Obstet Gynecol MFM ; 5(10): 101126, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562534

RESUMO

BACKGROUND: It is not known whether human fetal brain endothelial cells that form the blood-brain barrier express angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin, which are SARS-CoV-2 cell entry proteins. Moreover, it is unclear whether hypoxia, commonly observed during severe maternal COVID-19, can modify their level of expression. We hypothesized that human fetal brain endothelial cells isolated from early- and midpregnancy brain microvessels express angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin. Furthermore, we hypothesized that hypoxia modifies their expression levels in a gestational age- and time-of-exposure-dependent manner. OBJECTIVE: This study aimed to investigate whether early- and midpregnancy human fetal brain endothelial cells express angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin SARS-CoV-2-associated cell entry proteins and to determine the effects of hypoxia on angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin expression levels in human fetal brain endothelial cells. STUDY DESIGN: This was a prospective study where human fetal brain endothelial cells isolated from early-pregnancy (12.4±0.7 weeks of gestation) and midpregnancy (17.9±0.5 weeks of gestation) fetal brain microvessels (6 per group) were exposed to different oxygen tensions (20%, 5%, and 1% oxygen) for 6, 24, and 48 hours. Angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin messenger RNA and protein levels and localization were assessed using quantitative polymerase chain reaction, Western blot testing, and immunofluorescence. RESULTS: Angiotensin-converting enzyme 2, transmembrane serine protease 2, and furin co-localize with the endothelial cell marker von Willebrand factor in human fetal brain endothelial cells isolated from early pregnancy and midpregnancy. In early pregnancy, TMPRSS2 messenger RNA expression was decreased by 5% oxygen compared with 20% oxygen after 6 hours of exposure (P<.05). In midpregnancy, 5% oxygen down-regulated ACE2 messenger RNA compared with 20% oxygen after 24 hours (P<.05). Furin messenger RNA expression was decreased under 5% and 1% oxygen compared with 20% oxygen (P<.05) after 24 hours. In midpregnancy, angiotensin-converting enzyme 2 protein levels were decreased under 5% and 1% oxygen (P<.001) after 24 hours. In contrast, furin protein levels were increased under 1% oxygen compared with 20% oxygen after 24 hours (P<.05). At 48 hours, 1% oxygen increased angiotensin-converting enzyme 2 protein levels compared with 20% oxygen (P<.01). CONCLUSION: Hypoxia modifies the expression of selected SARS-CoV-2 cell entry proteins in human fetal brain endothelial cells in a gestational age- and time-of-exposure-dependent manner. As severe COVID-19 may lead to maternal hypoxia, an altered expression of these proteins in the developing human blood-brain barrier could potentially lead to altered SARS-CoV-2 brain invasion and neurologic sequelae in neonates born to pregnancies complicated by SARS-CoV-2 infection.

3.
Fluids Barriers CNS ; 20(1): 8, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721242

RESUMO

BACKGROUND: The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS: We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS: TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS: Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Feminino , Gravidez , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Moléculas com Motivos Associados a Patógenos , Ligantes , Lipopolissacarídeos , Proteínas de Neoplasias , Encéfalo , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos
4.
Cells ; 11(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883702

RESUMO

There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos , Células Endoteliais/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/metabolismo , Gravidez
5.
Cells ; 10(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359894

RESUMO

COVID-19 is associated with increased incidence of preterm birth (PTB). We assessed pathways by which SARS-CoV-2 could access the placenta. Placentae, from PTB with or without chorioamnionitis (ChA), or from term pregnancies (n = 12/13/group) were collected. Peripheral blood was collected from healthy pregnant women (n = 6). Second trimester placental explants (16-20 weeks, n = 5/group) were treated with lipopolysaccharide (LPS, to mimic bacterial infection) and ACE2, CCL2, IL-6/8 and TNFα mRNA was assessed. ChA-placentae exhibited increased ACE2 and CCL2 mRNA expression (p < 0.05). LPS increased cytokine and ACE2 mRNA in placental explants. Placental ACE2 protein localized to syncytiotrophoblast, fetal endothelium, extravillous trophoblast and in immune cells-subsets (M1/M2 macrophage and neutrophils) within the villous stroma. Significantly increased numbers of M1 macrophage and neutrophils were present in the ChA-placenta (p < 0.001). Subsets of peripheral immune cells from pregnant women express the ACE2 mRNA and protein. A greater fraction of granulocytes was positive for ACE2 protein expression compared to lymphocytes or monocytes. These data suggest that in pregnancies complicated by ChA, ACE2 positive immune cells in the maternal circulation have the potential to traffic SARS-CoV-2 virus to the placenta and increase the risk of vertical transmission to the placenta/fetus.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Expressão Gênica , Placenta/metabolismo , Complicações Infecciosas na Gravidez/genética , Nascimento Prematuro/etiologia , Adulto , COVID-19/genética , COVID-19/transmissão , Feminino , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Linfócitos/metabolismo , Monócitos/metabolismo , Placenta/citologia , Gravidez , Nascimento Prematuro/genética , SARS-CoV-2/isolamento & purificação
6.
Microvasc Res ; 138: 104232, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416267

RESUMO

The mechanisms by which the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induces neurological complications remain to be elucidated. We aimed to identify possible effects of hypoxia on the expression of SARS-CoV-2 cell entry mediators, angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) protein, in human brain endothelial cells, in vitro. hCMEC/D3 cells were exposed to different oxygen tensions: 20% (Control group), 8% or 2% O2 (Hypoxia groups). Cells were harvested 6-, 24- and 48 h following hypoxic challenge for assessment of mRNA and protein, using qPCR and Western Blot. The response of the brain endothelial cells to hypoxia was replicated using modular incubator chambers. We observed an acute increase (6 h, p < 0.05), followed by a longer-term decrease (48 h, p < 0.05) in ACE2 mRNA and protein expression, accompanied by reduced expression of TMPRSS2 protein levels (48 h, p < 0.05) under the more severe hypoxic condition (2% O2). No changes in levels of von Willebrand Factor (vWF - an endothelial cell damage marker) or interleukin 6 (IL-6 - a pro-inflammatory cytokine) mRNA were observed. We conclude that hypoxia regulates brain endothelial cell ACE2 and TMPRSS2 expression in vitro, which may indicate human brain endothelial susceptibility to SARS-CoV-2 infection and subsequent brain sequelae.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Encéfalo/irrigação sanguínea , COVID-19/virologia , Células Endoteliais/virologia , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , Hipóxia Celular , Linhagem Celular , Células Endoteliais/enzimologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Serina Endopeptidases/genética
7.
Tissue Barriers ; 9(2): 1860616, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427563

RESUMO

P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) modulate the distribution of drugs and toxins across the blood-brain barrier (BBB). Animal studies reported that infection-induced disruption of these transporters in the developing BBB impairs fetal brain protection. However, the impact of infection mimics on P-gp/BCRP function in human brain endothelium is less well understood. We hypothesized that Toll-like receptor ligands mimicking bacterial and viral infection would modify the expression and function of P-gp and BCRP in human brain endothelial cells (BECs). Human cerebral microvascular endothelial cells (hCMEC/D3) were challenged with bacterial [Lipopolysaccharide (LPS)] and viral-mimics [polyinosinic:polycytidylic acid (PolyI:C) or single-stranded RNA (ssRNA)], or pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon gamma (IFN)-É£. P-gp and BCRP function was assessed after 4 or 24 h, using Calcein-AM and Chlorin-6 assays, respectively. Western blot and qPCR quantified P-gp/ABCB1 and BCRP/ABCG2 expression following treatments. Infection mimics are potent modulators of drug transporters in human BECs in vitro. LPS and PolyI:C increased, while ssRNA exposure reduced P-gp activity. In contrast, LPS and PolyI:C decreased, while ssRNA increased BCRP activity (P < .05). There was little correlation between drug transporter function, gene expression and total protein level. Altered plasma membrane BCRP may suggest modified intracellular trafficking induced by infection in human BECs. Bacterial and viral infection mimics modify P-gp and BCRP transport function in human BECs, in vitro. This knowledge may contribute and have important implications for human brain protection and possible altered biodistribution of drugs and xenobiotics in the brain following exposure to TLR agonists.


Assuntos
Transporte Biológico/fisiologia , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/genética , Humanos
8.
Am J Obstet Gynecol ; 224(3): 298.e1-298.e8, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32853537

RESUMO

BACKGROUND: Although there is some evidence that severe acute respiratory syndrome coronavirus 2 can invade the human placenta, limited data exist on the gestational age-dependent expression profile of the severe acute respiratory syndrome coronavirus 2 cell entry mediators, angiotensin-converting enzyme 2 and transmembrane protease serine 2, at the human maternal-fetal interface. There is also no information as to whether the expression of these mediators is altered in pregnancies complicated by preeclampsia or preterm birth. This is important because the expression of decidual and placental angiotensin-converting enzyme 2 and transmembrane protease serine 2 across gestation may affect the susceptibility of pregnancies to vertical transmission of severe acute respiratory syndrome coronavirus 2. OBJECTIVE: This study aimed to investigate the expression pattern of specific severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across human pregnancy and in paired samples of decidua and placenta in pregnancies complicated by preterm birth or preeclampsia compared with those in term uncomplicated pregnancies. STUDY DESIGN: In this study, 2 separate cohorts of patients, totaling 87 pregnancies, were included. The first cohort was composed of placentae from first- (7-9 weeks), second- (16-18 weeks), and third-trimester preterm (26-31 weeks) and third-trimester term (38-41 weeks) pregnancies (n=5/group), whereas the second independent cohort included matched decidua and placentae from pregnancies from term uncomplicated pregnancies (37-41 weeks' gestation; n=14) and pregnancies complicated by preterm birth (26-37 weeks' gestation; n=11) or preeclampsia (25-37 weeks' gestation; n=42). Samples were subjected to quantitative polymerase chain reaction and next-generation sequencing or RNA sequencing for next-generation RNA sequencing for angiotensin-converting enzyme 2 and transmembrane protease serine 2 mRNA expression quantification, respectively. RESULTS: In the first cohort, angiotensin-converting enzyme 2 and transmembrane protease serine 2, exhibited a gestational age-dependent expression profile, that is, angiotensin-converting enzyme 2 and transmembrane protease serine 2 mRNA was higher (P<.05) in the first-trimester placenta than in second-trimester, preterm birth, and term placentae (P<.05) and exhibited a negative correlation with gestational age (P<.05). In the second cohort, RNA sequencing demonstrated very low or undetectable expression levels of angiotensin-converting enzyme 2 in preterm birth, preeclampsia, and term decidua and in placentae from late gestation. In contrast, transmembrane protease serine 2 was expressed in both decidual and placental samples but did not change in pregnancies complicated by either preterm birth or preeclampsia. CONCLUSION: The increased expression of these severe acute respiratory syndrome coronavirus 2 cell entry-associated genes in the placenta in the first trimester of pregnancy compared with those in later stages of pregnancy suggests the possibility of differential susceptibility to placental entry to severe acute respiratory syndrome coronavirus 2 across pregnancy. Even though there is some evidence of increased rates of preterm birth associated with severe acute respiratory syndrome coronavirus 2 infection, we found no increase in mRNA expression of angiotensin-converting enzyme 2 or transmembrane protease serine 2 at the maternal-fetal interface.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , Placenta/virologia , Pré-Eclâmpsia/metabolismo , Nascimento Prematuro/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Feminino , Humanos , Placenta/metabolismo , Gravidez , RNA Mensageiro/análise , Internalização do Vírus
9.
Artigo em Inglês | MEDLINE | ID: mdl-32733385

RESUMO

During placental development, cytotrophoblast progenitor cells differentiate into the syncytiotrophoblast and invasive extravillous trophoblasts (EVTs). Some EVTs further differentiate into endovascular trophoblasts (enEVTs) which exhibit endothelial-like properties. Abnormal placental development, including insufficient enEVT-mediated remodeling of the uterine spiral arteries, is thought to be a precipitating factor in the onset of preeclampsia (PE), a pregnancy-related hypertensive disorder. Several members of the transforming growth factor-ß (TGF-ß) superfamily, such as TGF-ßs, Nodal, and Activin have been reported to either promote or inhibit the invasive EVT pathway. These ligands signal through serine/threonine receptor complexes to activate downstream signaling mediators, Smad2 and Smad3. In this study, we determined Smad2 and Smad3 expression pattern in placenta and their effects on trophoblast invasion and differentiation. Total Smad2/3 levels were relatively constant across gestation while the ratio of active phosphorylated forms to their total levels varied with gestational stages, with a higher pSmad2/total Smad2 in later gestation and a higher pSmad3/total Smad3 in early gestation. Immunofluorescent staining revealed that pSmad3 was localized in nuclei of EVTs in anchoring villi. On the other hand, pSmad2 was mostly absent in this invasive EVT population. In addition, pSmad3/total Smad3, but not pSmad2/total Smad2, was significantly lower in both early onset and late onset PE cases, as compared to gestational age-matched controls. Functional studies carried out using a first trimester trophoblast cell line, HTR-8/SVneo, and first trimester human placental explants showed that Smad2 and Smad3 had differential roles in the invasive pathway. Specifically, siRNA-mediated knockdown of Smad2 resulted in an increase in trophoblast invasion and an upregulation of mRNA levels of enEVT markers while the opposite was observed with Smad3 knockdown. In addition, Smad2 siRNA accelerated the EVT outgrowth in first trimester placental explants while the Smad3 siRNA reduced the outgrowth of EVTs when compared to the control. Furthermore, knockdown of Smad2 enhanced, whereas overexpression of Smad2 suppressed, the ability of trophoblasts to form endothelial-like networks. Conversely, Smad3 had opposite effects as Smad2 on network formation. These findings suggest that Smad2 and Smad3 have opposite functions in the acquisition of an enEVT-like phenotype and defects in Smad3 activation are associated with PE.


Assuntos
Endotélio Vascular/patologia , Placenta/irrigação sanguínea , Pré-Eclâmpsia/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Trofoblastos/patologia , Adulto , Estudos de Casos e Controles , Diferenciação Celular , Endotélio Vascular/metabolismo , Feminino , Humanos , Fenótipo , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3/genética , Trofoblastos/metabolismo , Adulto Jovem
10.
Cells ; 8(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561453

RESUMO

Extravillous trophoblasts (EVT) migration into the decidua is critical for establishing placental perfusion and when dysregulated, may lead to pre-eclampsia (PE) and intrauterine growth restriction (IUGR). The breast cancer resistance protein (BCRP; encoded by ABCG2) regulates the fusion of cytotrophoblasts into syncytiotrophoblasts and protects the fetus from maternally derived xenobiotics. Information about BCRP function in EVTs is limited, however placental exposure to bacterial/viral infection leads to BCRP downregulation in syncitiotrophoblasts. We hypothesized that BCRP is involved in the regulation of EVT function and is modulated by infection/inflammation. We report that besides syncitiotrophoblasts and cytotrophoblasts, BCRP is also expressed in EVTs. BCRP inhibits EVT cell migration in HTR8/SVneo (human EVT-like) cells and in human EVT explant cultures, while not affecting cell proliferation. We have also shown that bacterial-lipopolysaccharide (LPS)-and viral antigens-single stranded RNA (ssRNA)-have a profound effect in downregulating ABCG2 and BCRP levels, whilst simultaneously increasing the migration potential of EVT-like cells. Our study reports a novel function of BCRP in early placentation and suggests that exposure of EVTs to maternal infection/inflammation could disrupt their migration potential via the downregulation of BCRP. This could negatively influence placental development/function, contribute to existing obstetric pathologies, and negatively impact pregnancy outcomes and maternal/neonatal health.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lipopolissacarídeos/efeitos adversos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Viral/efeitos adversos , Trofoblastos/citologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Placentação , Gravidez , Trofoblastos/metabolismo , Trofoblastos/microbiologia , Trofoblastos/virologia
11.
J Cell Mol Med ; 23(1): 610-618, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407748

RESUMO

The ATP-binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal-fetal interface. We and others have demonstrated a gestational age-dependent expression pattern of two ABC transporters, P-glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational-age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Placenta/metabolismo , Transcriptoma/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adulto , Feminino , Perfilação da Expressão Gênica/métodos , Idade Gestacional , Humanos , Proteínas de Neoplasias/genética , Gravidez , Trofoblastos/metabolismo
12.
J Cell Mol Med ; 22(11): 5378-5393, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30256530

RESUMO

Dysregulation of trophoblast differentiation is implicated in the placental pathologies of intrauterine growth restriction and pre-eclampsia. P-glycoprotein (P-gp encoded by ABCB1) is an ATP-binding cassette transporter present in the syncytiotrophoblast layer of the placenta where it acts as a molecular sieve. In this study, we show that P-gp is also expressed in the proliferating cytotrophoblast (CT), the syncytiotrophoblast (ST) and the extravillous trophoblast (EVT), suggesting our hypothesis of a functional role for P-gp in placental development. Silencing of ABCB1, via siRNA duplex, results in dramatically reduced invasion and migration, and increased tube formation and fusion in the EVT-like HTR8/SVneo cell line. In both EVT and CT explant differentiation experiments, silencing of ABCB1 leads to induction of the fusion markers human hCG, ERVW-1 and GJA1 and terminal differentiation of both trophoblast subtypes. Moreover, P-gp protein levels are decreased in both the villous and the EVT of severe early-onset pre-eclamptic placentas. We conclude that, in addition to its role as a syncytial transporter, P-gp is a key factor in the maintenance of both CT and EVT lineages and that its decrease in severe pre-eclampsia may contribute to the syncytial and EVT placental pathologies associated with this disease.


Assuntos
Placentação/genética , Pré-Eclâmpsia/genética , Trofoblastos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , RNA Interferente Pequeno/genética , Trofoblastos/patologia
13.
J Cell Mol Med ; 22(7): 3652-3660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691980

RESUMO

The placental multidrug transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP, ABCG2) protect the foetus from exposure to maternally derived glucocorticoids, toxins and xenobiotics. During pregnancy, maternal glucocorticoid levels can be elevated by stress or exogenous administration. We hypothesized that glucocorticoids modulate the expression of ABCB1/P-gp and ABCG2/BCRP in the first trimester human placenta. Our objective was to examine whether dexamethasone (DEX) or cortisol modulate first trimester placental expression of multidrug transporters and determine whether cytotrophoblasts or the syncytiotrophoblast are/is responsible for mediating these effects. Three models were examined: (i) an ex-vivo model of placental villous explants (7-10 weeks), (ii) a model of isolated first trimester syncytiotrophoblast and cytotrophoblast cells and (iii) the BeWo immortalized trophoblast cell line model. These cells/tissues were treated with DEX or cortisol for 24 hour to 72 hour. In first trimester placental explants, DEX (48 hour) increased ABCB1 (P < .001) and ABCG2 (P < .05) mRNA levels, whereas cortisol (48 hour) only increased ABCB1 mRNA levels (P < .01). Dexamethasone (P < .05) and cortisol (P < .01) increased BCRP but did not affect P-gp protein levels. Breast cancer resistance protein expression was primarily confined to syncytiotrophoblasts. BeWo cells, when syncytialized with forskolin, increased expression of BCRP protein, and this was further augmented by DEX (P < .05). Our data suggest that the protective barrier provided by BCRP increases as cytotrophoblasts fuse to form the syncytiotrophoblast. Increase in glucocorticoid levels during the first trimester may reduce embryo/foetal exposure to clinically relevant BCRP substrates, because of an increase in placental BCRP.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Glucocorticoides/farmacologia , Proteínas de Neoplasias/metabolismo , Placenta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Dexametasona/metabolismo , Dexametasona/farmacologia , Feminino , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Proteínas de Neoplasias/genética , Técnicas de Cultura de Órgãos , Placenta/efeitos dos fármacos , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
14.
Cell Physiol Biochem ; 45(2): 591-604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29402780

RESUMO

BACKGROUND/AIMS: The ATP-binding cassette (ABC) transporters mediate drug biodisposition and immunological responses in the placental barrier. In vitro infective challenges alter expression of specific placental ABC transporters. We hypothesized that chorioamnionitis induces a distinct pattern of ABC transporter expression. METHODS: Gene expression of 50 ABC transporters was assessed using TaqMan® Human ABC Transporter Array, in preterm human placentas without (PTD; n=6) or with histological chorioamnionitis (PTDC; n=6). Validation was performed using qPCR, immunohistochemistry and Western blot. MicroRNAs known to regulate P-glycoprotein (P-gp) were examined by qPCR. RESULTS: Up-regulation of ABCB9, ABCC2 and ABCF2 mRNA was detected in chorioamnionitis (p<0.05), whereas placental ABCB1 (P-gp; p=0.051) and ABCG2 (breast cancer resistance protein-BCRP) mRNA levels (p=0.055) approached near significant up-regulation. In most cases, the magnitude of the effect significantly correlated to the severity of inflammation. Upon validation, increased placental ABCB1 and ABCG2 mRNA levels (p<0.05) were observed. At the level of immunohistochemistry, while BCRP was increased (p<0.05), P-gp staining intensity was significantly decreased (p<0.05) in PTDC. miR-331-5p, involved in P-gp suppression, was upregulated in PTDC (p<0.01) and correlated to the grade of chorioamnionitis (p<0.01). CONCLUSIONS: Alterations in the expression of ABC transporters will likely lead to modified transport of clinically relevant compounds at the inflamed placenta. A better understanding of the potential role of these transporters in the events surrounding PTD may also enable new strategies to be developed for prevention and treatment of PTD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Corioamnionite/patologia , MicroRNAs/metabolismo , Placenta/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Corioamnionite/genética , Corioamnionite/metabolismo , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Imuno-Histoquímica , Recém-Nascido , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , MicroRNAs/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Gravidez , Nascimento Prematuro , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Regulação para Cima , Adulto Jovem
15.
Am J Pathol ; 185(6): 1666-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25963552

RESUMO

The ABC transporters P-glycoprotein (P-gp, official gene symbol ABCB1) and breast cancer resistance protein (BCRP, official gene symbol ABCG2) protect the conceptus from exposure to toxins and xenobiotics present in the maternal circulation. Viral or bacterial challenges alter expression of placental multidrug transporters in rodents. We hypothesized that exposure to lipopolysaccharide (LPS, bacterial antigen) and polyinosinic-polycytidylic acid (poly(I:C), viral antigen) would decrease P-gp and BCRP in the human placenta. Placental explants from first and third trimesters were challenged with 0.1 to 10 µg/mL LPS or 1 to 50 µg/mL poly(I:C) for 4 or 24 hours; mRNA levels, protein expression, and localization were assessed by quantitative real-time PCR, Western blot analysis, and immunohistochemistry, respectively. Toll-like receptor (TLR)-3 and TLR-4 mRNA expression increased from the first to third trimester (P < 0.01), and the receptors localized to cytotrophoblasts in the first trimester and to syncytiotrophoblasts in the third trimester. LPS exposure in first-trimester explants decreased (P < 0.001) ABCB1 and ABCG2 mRNA and protein levels. In contrast, poly(I:C) decreased (P < 0.05) ABCB1, TLR-3, and TLR-4 mRNA levels in the third trimester but not first trimester. LPS and poly(I:C) treatments increased (P < 0.01) IL-8 and chemokine ligand 2. Results suggest that bacterial infections likely alter exposure of the conceptus to toxins and drugs during early pregnancy, whereas viral infections may disrupt fetal protection in later stages of pregnancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Placenta/efeitos dos fármacos , Placenta/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/fisiologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Poli I-C/farmacologia , Gravidez , Primeiro Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor trkB , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...