Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829907

RESUMO

The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.


Assuntos
Membrana Celular , Parede Celular , Corynebacterium glutamicum , Ácidos Micólicos , Fator sigma , Parede Celular/metabolismo , Parede Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Fator sigma/metabolismo , Fator sigma/genética , Membrana Celular/metabolismo , Estresse Fisiológico , Porinas/metabolismo , Porinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Galactanos/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
2.
Cell Rep ; 37(5): 109953, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731630

RESUMO

Receptor clustering is the first and critical step to activate apoptosis by death receptor-5 (DR5). The recent discovery of the autoinhibitory DR5 ectodomain has challenged the long-standing view of its mechanistic activation by the natural ligand Apo2L. Because the autoinhibitory residues have remained unknown, here we characterize a crucial patch of positively charged residues (PPCR) in the highly variable domain of DR5. The PPCR electrostatically separates DR5 receptors to autoinhibit their clustering in the absence of ligand and antibody binding. Mutational substitution and antibody-mediated PPCR interference resulted in increased apoptotic cytotoxic function. A dually specific antibody that enables sustained tampering with PPCR function exceptionally enhanced DR5 clustering and apoptotic activation and distinctively improved the survival of animals bearing aggressive metastatic and recurrent tumors, whereas clinically tested DR5 antibodies without PPCR blockade function were largely ineffective. Our study provides mechanistic insights into DR5 activation and a therapeutic analytical design for potential clinical success.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Especificidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/metabolismo , Epitopos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
EMBO Mol Med ; 13(3): e12716, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587338

RESUMO

Lack of effective immune infiltration represents a significant barrier to immunotherapy in solid tumors. Thus, solid tumor-enriched death receptor-5 (DR5) activating antibodies, which generates tumor debulking by extrinsic apoptotic cytotoxicity, remains a crucial alternate therapeutic strategy. Over past few decades, many DR5 antibodies moved to clinical trials after successfully controlling tumors in immunodeficient tumor xenografts. However, DR5 antibodies failed to significantly improve survival in phase-II trials, leading in efforts to generate second generation of DR5 agonists to supersize apoptotic cytotoxicity in tumors. Here we have discovered that clinical DR5 antibodies activate an unexpected immunosuppressive PD-L1 stabilization pathway, which potentially had contributed to their limited success in clinics. The DR5 agonist stimulated caspase-8 signaling not only activates ROCK1 but also undermines proteasome function, both of which contributes to increased PD-L1 stability on tumor cell surface. Targeting DR5-ROCK1-PD-L1 axis markedly increases immune effector T-cell function, promotes tumor regression, and improves overall survival in animal models. These insights have identified a potential clinically viable combinatorial strategy to revive solid cancer immunotherapy using death receptor agonism.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Animais , Anticorpos Monoclonais , Humanos , Evasão da Resposta Imune , Imunoterapia , Quinases Associadas a rho
4.
J Vis Exp ; (159)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32478720

RESUMO

Monoclonal antibodies are high affinity multifunctional drugs that work by variable independent mechanisms to eliminate cancer cells. Over the last few decades, the field of antibody-drug conjugates, bispecific antibodies, chimeric antigen receptors (CAR) and cancer immunotherapy has emerged as the most promising area of basic and therapeutic investigations. With numerous successful human trials targeting immune checkpoint receptors and CAR-T cells in leukemia and melanoma at a breakthrough pace, it is highly exciting times for oncologic therapeutics derived from variations of antibody engineering. Regrettably, a significantly large numbers of antibody and CAR based therapeutics have also proven disappointing in human trials of solid cancers because of the limited availability of immune effector cells in the tumor bed. Importantly, nonspecific distribution of therapeutic antibodies in tissues other than tumors also contribute to the lack of clinical efficacy, associated toxicity and clinical failure. As faithful translation of preclinical studies into human clinical trails are highly relied on mice tumor xenograft efficacy and safety studies, here we highlight a method to test the tumor and general tissue distribution of therapeutic antibodies. This is achieved by labeling the protein-A purified antibody with near Infrared fluorescent dye followed by live imaging of tumor bearing mice.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Neoplasias/terapia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Humanos , Imunoterapia , Camundongos , Proteína Estafilocócica A , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA