Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 90(6): 378-388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37499226

RESUMO

In the ovaries, cyclic adenosine 3',5'-monophosphate (cAMP) is a second messenger supporting the generation of steroids. Phosphodiesterases (PDEs) are regulators of intracellular cAMP, and therefore, potential regulators of ovarian function. Interestingly, the family of PDE genes are differentially expressed in human oocytes and granulosa cells from primordial and primary follicles, suggesting diverse roles. In this study, we addressed the functions of PDE3B and PDE8B in primordial follicle regulation using inhibitors of PDE3B and PDE8B in murine ovary primary in vitro cultures. Inhibition of PDE8B in ovarian cultures prevented primordial follicle activation, while inhibition of PDE3B had no effect on follicle distribution in the ovary, under the tested conditions. As cAMP levels may increase steroid levels, we assessed the protein levels of the steroidogenic acute regulatory protein (StAR) and aromatase enzymes, and found that inhibition of PDE3B reduced StAR protein levels, whereas inhibition of PDE8 did not alter StAR expression in our murine ovary culture system conditions. Our results showed that ketotifen-induced inhibition of PDE8B can decrease primordial follicle activation, whereas we observed no effect of follicle distribution, when PDE3B was inhibited. Expression of the StaR enzyme was not altered when PDE8B was inhibited, which might reflect not sufficient inhibition by ketotifen to induce StAR alterations, or redundant mechanisms.


Assuntos
Ovário , Diester Fosfórico Hidrolases , Animais , Feminino , Humanos , Camundongos , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Cetotifeno/metabolismo , Cetotifeno/farmacologia , Oócitos , Folículo Ovariano/metabolismo , Ovário/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Esteroides/metabolismo
2.
J Am Heart Assoc ; 11(7): e021814, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289188

RESUMO

Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.


Assuntos
Coração , Transtornos de Enxaqueca , Enxaqueca com Aura , ATPase Trocadora de Sódio-Potássio , Animais , Coração/fisiopatologia , Heterozigoto , Camundongos , Enxaqueca com Aura/metabolismo , Mutação , Miocárdio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
3.
Front Cell Dev Biol ; 9: 708076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368158

RESUMO

Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.

5.
J Assist Reprod Genet ; 37(6): 1355-1365, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32399794

RESUMO

PURPOSE: The aim of the study is to investigate presence and role of the gene encoding the maternally contributed nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD)-containing protein 9 (NLRP9) in human and mouse ovaries, respectively, and in preimplantation mouse embryo development by knocking down Nlrp9b. METHODS: Expression levels of NLRP9 mRNA in human follicles were extracted from RNA sequencing data from previous studies. In this study, we performed a qPCR analysis of Nlpr9b mRNA in mouse oocytes and found it present. Intracellular ovarian distribution of NLRP9B protein was accomplished using immunohistochemistry. The distribution of NLRP9B was explored using a reporter gene approach, fusing NLRP9B to green fluorescent protein and microinjection of in vitro-generated mRNA. Nlrp9b mRNA function was knocked down by microinjection of short interference (si) RNA targeting Nlrp9b, into mouse pronuclear zygotes. Knockdown of the Nlrp9b mRNA transcript was confirmed by qPCR. RESULT: We found that the human NLRP9 gene and its corresponding protein are highly expressed in human primordial and primary follicles. The NLRP9B protein is localized to the cytoplasm in the blastomeres of a 2-cell embryo in mice. SiRNA-mediated knockdown of Nlrp9b caused rapid elimination of endogenous Nlrp9b mRNA and premature embryo arrest at the 2- to 4-cell stages compared with that of the siRNA-scrambled control group. CONCLUSIONS: These results suggest that mouse Nlrp9b, as a maternal effect gene, could contribute to mouse preimplantation embryo development. It remains to investigate whether NLRP9 have a crucial role in human preimplantation embryo and infertility.


Assuntos
Desenvolvimento Embrionário/genética , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/genética , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Citoplasma/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Folículo Ovariano/metabolismo , Análise de Sequência de RNA , Zigoto/crescimento & desenvolvimento
6.
Cardiovasc Res ; 116(12): 2009-2020, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710670

RESUMO

AIMS: Acute migraine attack in familial hemiplegic migraine type 2 (FHM2) patients is characterized by sequential hypo- and hyperperfusion. FHM2 is associated with mutations in the Na, K-ATPase α2 isoform. Heterozygous mice bearing one of these mutations (α2+/G301R mice) were shown to have elevated cerebrovascular tone and, thus, hypoperfusion that might lead to elevated concentrations of local metabolites. We hypothesize that these α2+/G301R mice also have increased cerebrovascular hyperaemic responses to these local metabolites leading to hyperperfusion in the affected part of the brain. METHODS AND RESULTS: Neurovascular coupling was compared in α2+/G301R and matching wild-type (WT) mice using Laser Speckle Contrast Imaging. In brain slices, parenchymal arteriole diameter and intracellular calcium changes in neuronal tissue, astrocytic endfeet, and smooth muscle cells in response to neuronal excitation were assessed. Wall tension and smooth muscle membrane potential were measured in isolated middle cerebral arteries. Quantitative polymerase chain reaction, western blot, and immunohistochemistry were used to assess the molecular background underlying the functional changes. Whisker stimulation induced larger increase in blood perfusion, i.e. hyperaemic response, of the somatosensory cortex of α2+/G301R than WT mice. Neuronal excitation was associated with larger parenchymal arteriole dilation in brain slices from α2+/G301R than WT mice. These hyperaemic responses in vivo and ex vivo were inhibited by BaCl2, suggesting involvement of inward-rectifying K+ channels (Kir). Relaxation to elevated bath K+ was larger in arteries from α2+/G301R compared to WT mice. This difference was endothelium-dependent. Endothelial Kir2.1 channel expression was higher in arteries from α2+/G301R mice. No sex difference in functional responses and Kir2.1 expression was found. CONCLUSION: This study suggests that an abnormally high cerebrovascular hyperaemic response in α2+/G301R mice is a result of increased endothelial Kir2.1 channel expression. This may be initiated by vasospasm-induced accumulation of local metabolites and underlie the hyperperfusion seen in FHM2 patients during migraine attack.


Assuntos
Circulação Cerebrovascular , Artéria Cerebral Média/fisiopatologia , Enxaqueca com Aura/fisiopatologia , Acoplamento Neurovascular , ATPase Trocadora de Sódio-Potássio/metabolismo , Vasodilatação , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Hiperemia/enzimologia , Hiperemia/fisiopatologia , Masculino , Camundongos Transgênicos , Artéria Cerebral Média/enzimologia , Enxaqueca com Aura/enzimologia , Enxaqueca com Aura/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
7.
Hum Reprod ; 34(11): 2129-2143, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713610

RESUMO

STUDY QUESTION: Does maternal smoking in early pregnancy affect metallothionein 1 and 2 (MT1 and MT2) mRNA and protein expression in first trimester placenta or embryonic/fetal liver? SUMMARY ANSWER: In the first trimester, MT protein expression is seen only in liver, where smoking is associated with a significantly reduced expression. WHAT IS KNOWN ALREADY: Zinc homeostasis is altered by smoking. Smoking induces MT in the blood of smokers properly as a result of the cadmium binding capacities of MT. In term placenta MT is present and smoking induces gene and protein expression (MT2 in particular), but the MT presence and response to smoking have never been examined in first trimester placenta or embryonic/fetal tissues. STUDY DESIGN, SIZE, DURATION: Cross sectional study where the presence of MT mRNA and protein was examined at the time of the abortion. The material was collected with informed consent after surgical intervention and frozen immediately. For protein expression analysis, liver tissue originating from smoking exposed n = 10 and unexposed n = 12 pregnancies was used. For mRNA expression analyses, placental tissue originating from smokers n = 19 and non-smokers n = 23 and fetal liver tissue from smoking exposed n = 16 and smoking unexposed pregnancies n = 13, respectively, were used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Tissues were obtained from women who voluntarily and legally chose to terminate their pregnancy between gestational week 6 and 12. Western blot was used to determine the protein expression of MT, and real-time PCR was used to quantify the mRNA expression of MT2A and eight MT1 genes alongside the expression of key placental zinc transporters: zinc transporter protein-1 (ZNT1), Zrt-, Irt-related protein-8 and -14 (ZIP8 and ZIP14). MAIN RESULTS AND THE ROLE OF CHANCE: A significant reduction in the protein expression of MT1/2 in liver tissue (P = 0.023) was found by western blot using antibodies detecting both MT forms. Overall, a similar tendency was observed on the mRNA level although not statistically significant. Protein expression was not present in placenta, but the mRNA regulation suggested a down regulation of MT as well. A suggested mechanism based on the known role of MT in zinc homeostasis could be that the findings reflect reduced levels of easily accessible zinc in the blood of pregnant smokers and hence a reduced MT response in smoking exposed fetal/embryonic tissues. LIMITATIONS AND REASONS FOR CAUTION: Smoking was based on self-reports; however, our previous studies have shown high consistency regarding cotinine residues and smoking status. Passive smoking could interfere but was found mainly among smokers. The number of fetuses was limited, and other factors such as medication and alcohol might affect the findings. Information on alcohol was not consistently obtained, and we cannot exclude that it was more readily obtained from non-users. In the study, alcohol consumption was reported by a limited number (less than 1 out of 5) of women but with more smokers consuming alcohol. However, the alcohol consumption reported was typically limited to one or few times low doses. The interaction between alcohol and smoking is discussed in the paper. Notably we would have liked to measure zinc status to test our hypothesis, but maternal blood samples were not available. WIDER IMPLICATIONS OF THE FINDINGS: Zinc deficiency-in particular severe zinc deficiency-can affect pregnancy outcome and growth. Our findings indicate that zinc homeostasis is also affected in early pregnancy of smokers, and we know from pilot studies that even among women who want to keep their babies, the zinc status is low. Our findings support that zinc supplements should be considered in particular to women who smoke. STUDY FUNDING/COMPETING INTEREST(S): We thank the Department of Biomedicine for providing laboratory facilities and laboratory technicians and the Lundbeck Foundation and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis Legat for financial support. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fígado/enzimologia , Exposição Materna , Metalotioneína/metabolismo , Fumar/efeitos adversos , Zinco/sangue , Aborto Induzido , Estudos Transversais , Dinamarca , Suplementos Nutricionais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez
8.
Biol Reprod ; 101(2): 284-296, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201414

RESUMO

Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Domínios Proteicos
9.
Sci Adv ; 5(6): eaav9946, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31223654

RESUMO

Neuropathic pain is a major incurable clinical problem resulting from peripheral nerve trauma or disease. A central mechanism is the reduced expression of the potassium chloride cotransporter 2 (KCC2) in dorsal horn neurons induced by brain-derived neurotrophic factor (BDNF), causing neuronal disinhibition within spinal nociceptive pathways. Here, we demonstrate how neurotensin receptor 2 (NTSR2) signaling impairs BDNF-induced spinal KCC2 down-regulation, showing how these two pathways converge to control the abnormal sensory response following peripheral nerve injury. We establish how sortilin regulates this convergence by scavenging neurotensin from binding to NTSR2, thus modulating its inhibitory effect on BDNF-mediated mechanical allodynia. Using sortilin-deficient mice or receptor inhibition by antibodies or a small-molecule antagonist, we lastly demonstrate that we are able to fully block BDNF-induced pain and alleviate injury-induced neuropathic pain, validating sortilin as a clinically relevant target.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neuralgia/metabolismo , Neurotensina/metabolismo , Animais , Regulação para Baixo/fisiologia , Feminino , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/metabolismo , Receptores de Neurotensina/metabolismo , Transdução de Sinais/fisiologia
11.
Neuropharmacology ; 150: 100-111, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30836092

RESUMO

Inhibition of postsynaptic density protein-95 (PSD-95) decouples N-methyl-d-aspartate (NMDA) receptor downstream signaling and results in neuroprotection after focal cerebral ischemia. We have previously developed UCCB01-144, a dimeric PSD-95 inhibitor, which binds PSD-95 with high affinity and is neuroprotective in experimental stroke. Here, we investigate the selectivity, efficacy and toxicity of UCCB01-144 and compare with the monomeric drug candidate Tat-NR2B9c. Fluorescence polarization using purified proteins and pull-downs of mouse brain lysates showed that UCCB01-144 potently binds all four PSD-95-like membrane-associated guanylate kinases (MAGUKs). In addition, UCCB01-144 affected NMDA receptor signaling pathways in ischemic brain tissue. UCCB01-144 reduced infarct size in young and aged male mice at various doses when administered 30 min after permanent middle cerebral artery occlusion, but UCCB01-144 was not effective in young male mice when administered 1 h post-ischemia or in female mice. Furthermore, UCCB01-144 was neuroprotective in a transient stroke model in rats, and in contrast to Tat-NR2B9c, high dose of UCCB01-144 did not lead to significant changes in mean arterial blood pressure or heart rate. Overall, UCCB01-144 is a potent MAGUK inhibitor that reduces neurotoxic PSD-95-mediated signaling and improves neuronal survival following focal brain ischemia in rodents under various conditions and without causing cardiovascular side effects, which encourages further studies towards clinical stroke trials.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Éteres/farmacologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éteres/efeitos adversos , Éteres/uso terapêutico , Feminino , Masculino , Camundongos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Ratos , Fatores de Tempo
12.
J Cereb Blood Flow Metab ; 39(8): 1570-1587, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29513112

RESUMO

Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.


Assuntos
Circulação Cerebrovascular/genética , Enxaqueca com Aura/metabolismo , Contração Muscular/genética , ATPase Trocadora de Sódio-Potássio/genética , Vasoconstrição/genética , Animais , Cálcio/metabolismo , Camundongos , Artéria Cerebral Média/metabolismo , Enxaqueca com Aura/genética , Músculo Liso Vascular/metabolismo , Mutação Puntual
14.
Sci Rep ; 8(1): 16959, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446731

RESUMO

Migraine is a highly prevalent, debilitating, episodic headache disorder affecting roughly 15% of the population. Familial hemiplegic migraine type 2 (FHM2) is a rare subtype of migraine caused by mutations in the ATP1A2 gene, encoding the α2 isoform of the Na+/K+-ATPase, predominantly expressed in astrocytes. Differential comorbidities such as epilepsy and psychiatric disorders manifest in patients. Using a mouse model harboring the G301R disease-mutation in the α2 isoform, we set to unravel whether α2+/G301R mice show an increased susceptibility for epilepsy and cortical spreading depression (CSD). We performed in vivo experiments involving cortical application of KCl in awake head-restrained male and female mice of different age groups (adult and aged). Interestingly, α2+/G301R mice indeed showed an increased susceptibility to both CSD and epileptiform activity, closely replicating symptoms in FHM2 patients harboring the G301R and other FHM2-causing mutations. Additionally, this epileptiform activity was superimposed on CSDs. The age-related alteration towards CSD indicates the influence of female sex hormones on migraine pathophysiology. Therefore, the FHM2, α2+/G301R mouse model can be utilized to broaden our understanding of generalized epilepsy and comorbidity hereof in migraine, and may be utilized toward future selection of possible treatment options for migraine.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/genética , Modelos Animais de Doenças , Epilepsia/genética , Predisposição Genética para Doença/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores Etários , Animais , Feminino , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Transtornos de Enxaqueca/genética , Enxaqueca com Aura/patologia , Mutação , ATPase Trocadora de Sódio-Potássio/genética
15.
Front Cell Dev Biol ; 6: 78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087896

RESUMO

Emerging evidence indicated that many long non-coding (lnc)RNAs function in multiple biological processes and dysregulation of their expression can cause diseases. Most regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression through epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. Interestingly, differential lncRNA expression profiles in human oocytes and cumulus cells was recently assessed, however, lncRNAs in human follicle development has not previously been described. In this study, transcriptome dynamics in human primordial, primary and small antral follicles were interrogated and revealed information of lncRNA genes. It is known that some lncRNAs form a complex with paraspeckle proteins and therefore, we extended our transcriptional analysis to include genes encoding paraspeckle proteins. Primordial, primary follicles and small antral follicles was isolated using laser capture micro-dissection from ovarian tissue donated by three women having ovarian tissue cryopreserved before chemotherapy. After RN sequencing, a bioinformatic class comparison was performed and primordial, primary and small antral follicles were found to express several lncRNA and genes encoding paraspeckle proteins. Of particular interest, we detected the lncRNAs XIST, NEAT1, NEAT2 (MALAT1), and GAS5. Moreover, we noted a high expression of FUS, TAF15, and EWS components of the paraspeckles, proteins that belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity, and mRNA/microRNA processing. We also interrogated the intra-ovarian localization of the FUS, TAF15, and EWS proteins using immunofluorescence. The presence and the dynamics of genes that encode lncRNA and paraspeckle proteins may suggest that these may mediate functions in the cyclic recruitment and differentiation of human follicles and could participate in biological processes known to be associated with lncRNAs and paraspeckle proteins, such as gene expression control, scaffold formation and epigenetic control through human follicle development. This comprehensive transcriptome analysis of lncRNAs and genes encoding paraspeckle proteins expressed in human follicles could potentially provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.

16.
Front Cell Dev Biol ; 6: 85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148131

RESUMO

Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.

17.
Mol Neurobiol ; 55(11): 8522-8537, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29560581

RESUMO

Receptor- and adsorptive-mediated transport through brain endothelial cells (BEC) of the blood-brain barrier (BBB) involves a complex array of subcellular vesicular structures, the endo-lysosomal system. It consists of several types of vesicles, such as early, recycling, and late endosomes, retromer-positive structures, and lysosomes. Since this system is important for receptor-mediated transcytosis of drugs across brain capillaries, our aim was to characterise the endo-lysosomal system in BEC with emphasis on their interactions with astrocytes. We used primary porcine BEC in monoculture and in co-culture with primary rat astrocytes. The presence of astrocytes changed the intraendothelial vesicular network and significantly impacted vesicular number, morphology, and distribution. Additionally, gene set enrichment analysis revealed that 60 genes associated with vesicular trafficking showed altered expression in co-cultured BEC. Cytosolic proteins involved in subcellular trafficking were investigated to mark transport routes, such as RAB25 for transcytosis. Strikingly, the adaptor protein called AP1-µ1B, important for basolateral sorting in epithelial cells, was not expressed in BEC. Altogether, our data pin-point unique features of BEC trafficking network, essentially mapping the endo-lysosomal system of in vitro BBB models. Consequently, our findings constitute a valuable basis for planning the optimal route across the BBB when advancing drug delivery to the brain.


Assuntos
Astrócitos/metabolismo , Encéfalo/citologia , Endossomos/metabolismo , Células Endoteliais/metabolismo , Lisossomos/metabolismo , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Ratos Wistar , Frações Subcelulares/metabolismo
18.
Environ Toxicol Pharmacol ; 57: 19-27, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29169084

RESUMO

Prenatal exposure to maternal cigarette smoking increases the risk of intrauterine growth retardation, adverse pregnancy outcomes, and diseases later in life. Exposure can result in postnatal global and gene-specific DNA methylation changes, with the latter well documented for the CYP1A1 and AHRR genes involved in the detoxification of xenobiotic substances. This study assessed the impact of exposure to maternal smoking on first trimester fetal CYP1A1 and AHRR mRNA expression and DNA methylation for CpG-sites displaying maternal smoking during pregnancy-mediated methylation changes at birth. The analyses included first trimester (6-12 weeks) placentas (N=39) and livers (N=43). For AHRR, exposure to maternal smoking was associated with increased DNA methylation in the placentas of female fetuses; mRNA expression, however, was unchanged. While exposure to maternal smoking was not associated with AHRR DNA methylation changes in fetal livers; mRNA expression was increased. For CYP1A1, exposure to maternal smoking was not associated with fetal DNA methylation changes whereas mRNA expression increased in placentas and male fetal livers. These results show that first trimester exposure to maternal smoking is associated with CYP1A1 and AHRR DNA methylation and mRNA expression changes. However, the results also indicate that maternal smoking during pregnancy-mediated postnatal CYP1A1 and AHRR DNA methylation changes are not imprinted during the first trimester.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fumar Cigarros/genética , Citocromo P-450 CYP1A1/genética , Metilação de DNA , Primeiro Trimestre da Gravidez/genética , Proteínas Repressoras/genética , Feminino , Humanos , Fígado/metabolismo , Masculino , Exposição Materna , Troca Materno-Fetal , Placenta/metabolismo , Gravidez , RNA Mensageiro/metabolismo
19.
Front Cell Dev Biol ; 5: 89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29034232

RESUMO

Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1.

20.
BMC Neurosci ; 18(1): 66, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886701

RESUMO

BACKGROUND: The Na+/K+-ATPases are transmembrane ion pumps important for maintenance of ion gradients across the plasma membrane that serve to support multiple cellular functions, such as membrane potentials, regulation of cellular volume and pH, and co-transport of signaling transmitters in all animal cells. The α2Na+/K+-ATPase subunit isoform is predominantly expressed in astrocytes, which us the sharp Na+-gradient maintained by the sodium pump necessary for astroglial metabolism. Prolonged ischemia induces an elevation of [Na+]i, decreased ATP levels and intracellular pH owing to anaerobic metabolism and lactate accumulation. During ischemia, Na+/K+-ATPase-related functions will naturally increase the energy demand of the Na+/K+-ATPase ion pump. However, the role of the α2Na+/K+-ATPase in contusion injury to the spinal cord remains unknown. We used mice heterozygous mice for the loss-of-function disease-mutation G301R in the Atp1a2 gene (α 2+/G301R ) to study the effect of reduced α2Na+/K+-ATPase expression in a moderate contusion spinal cord injury (SCI) model. RESULTS: We found that α 2+/G301R mice display significantly improved functional recovery and decreased lesion volume compared to littermate controls (α 2+/+ ) 7 days after SCI. The protein level of the α1 isoform was significantly increased, in contrast to the α3 isoform that significantly decreased 3 days after SCI in both α 2+/G301R and α 2+/+ mice. The level of the α2 isoform was significantly decreased in α 2+/G301R mice both under naïve conditions and 3 days after SCI compared to α 2+/+ mice. We found no differences in astroglial aquaporin 4 levels and no changes in the expression of chemokines (CCL2, CCL5 and CXCL1) and cytokines (TNF, IL-6, IL-1ß, IL-10 and IL-5) between genotypes, just as no apparent differences were observed in location and activation of CD45 and F4/80 positive microglia and infiltrating leukocytes. CONCLUSION: Our proof of concept study demonstrates that reduced expression of the α2 isoform in the spinal cord is protective following SCI. Importantly, the BMS and lesion volume were assessed at 7 days after SCI, and longer time points after SCI were not evaluated. However, the α2 isoform is a potential possible target of therapeutic strategies for the treatment of SCI.


Assuntos
Membrana Celular/metabolismo , Recuperação de Função Fisiológica/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Animais , Genótipo , Interleucina-10/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Potenciais da Membrana/genética , Camundongos Transgênicos , Mutação/genética , Recuperação de Função Fisiológica/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/genética , Traumatismos da Medula Espinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...