Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826237

RESUMO

Drosophila s-LNv circadian pacemaker neurons show dramatic structural plasticity, with their projections expanded at dawn and then retracted by dusk. This predictable plasticity makes s-LNvs ideal to study molecular mechanisms of plasticity. Although s-LNv plasticity is controlled by their molecular clock, changing s-LNv excitability also regulates plasticity. Here, we tested the idea that s-LNvs use activity-regulated genes to control plasticity. We found that inducing expression of either of the activity-regulated transcription factors Hr38 or Sr (orthologs of mammalian Nr4a1 and Egr1) is sufficient to rapidly expand s-LNv projections. Conversely, transiently knocking down expression of either Hr38 or sr blocks expansion of s-LNv projections at dawn. We show that Hr38 rapidly induces transcription of sif, which encodes a Rac1 GEF required for s-LNv plasticity rhythms. We conclude that the s-LNv molecular clock controls s-LNv excitability, which couples to an activity-regulated gene expression program to control s-LNv plasticity.

2.
bioRxiv ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37693612

RESUMO

Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.

3.
Am Nat ; 190(1): 61-72, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28617639

RESUMO

Correlations among traits, including behaviors, are important because traits that are genetically correlated may not evolve independently. Recently, behavioral-correlations research has expanded to include correlations not only in mean-level behaviors but also in behavioral plasticity, that is, the degree to which individuals change their behavior in response to environmental stimuli. Positive correlations among behavioral plasticities would imply that individuals or genotypes that are behaviorally plastic in one way may also be plastic in other ways; negative correlations could imply trade-offs. Here, we examine aversive odor conditioning (learning) at two time points and plasticity in pupation site selection behavior across substrates in a panel of Drosophila genotypes. These behaviors represent different types of behavioral plasticity: contextual plasticity describes behavioral responses to stimuli that are currently present, while developmental plasticity describes behavioral responses to remembered experiences with stimuli in the recent past. We find that learning scores and plasticity in pupation site selection behavior are positively genetically correlated, representing the first example of a genetic correlation between developmental and contextual plasticity. These findings imply that ecological and evolutionary theories focusing on variation in a single dimension of behavioral plasticity may be incomplete.


Assuntos
Comportamento Animal , Drosophila melanogaster/genética , Genótipo , Animais , Fenótipo
4.
Cell ; 165(6): 1310-1311, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259141

RESUMO

The drive to sleep increases the longer that we stay awake, but this process is poorly understood at the cellular level. Now, Liu et al. show that the plasticity of a small group of neurons in the Drosophila central brain is a key component of the sleep homeostat.


Assuntos
Drosophila melanogaster/metabolismo , Receptores de N-Metil-D-Aspartato , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ovinos , Sono
5.
Ecol Evol ; 5(15): 3171-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26357543

RESUMO

The nascent stages of speciation start with the emergence of sexual isolation. Understanding the influence of reproductive barriers in this evolutionary process is an ongoing effort. We present a study of Drosophila melanogaster admixed populations from the southeast United States and the Caribbean islands known to be a secondary contact zone of European- and African-derived populations undergoing incipient sexual isolation. The existence of premating reproductive barriers has been previously established, but these types of barriers are not the only source shaping sexual isolation. To assess the influence of postmating barriers, we investigated putative postmating barriers of female remating and egg-laying behavior, as well as hatchability of eggs laid and female longevity after mating. In the central region of our putative hybrid zone of American and Caribbean populations, we observed lower hatchability of eggs laid accompanied by increased resistance to harm after mating to less-related males. These results illustrate that postmating reproductive barriers act alongside premating barriers and genetic admixture such as hybrid incompatibilities and influence early phases of sexual isolation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA