Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 325(5): F656-F668, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706232

RESUMO

The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.


Assuntos
Fatores de Transcrição ARNTL , Hipertensão , Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Citocinas , Dieta , Hipertensão/genética , Hipertensão/prevenção & controle , Rim/metabolismo , Camundongos Knockout , Cloreto de Sódio na Dieta
2.
Function (Oxf) ; 4(2): zqad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778748

RESUMO

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.


Assuntos
Fatores de Transcrição ARNTL , Pressão Sanguínea , Relógios Circadianos , Comportamento Alimentar , Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Encéfalo/metabolismo , Relógios Circadianos/genética , Corticosterona , Camundongos Knockout
3.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129370

RESUMO

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Assuntos
Aldosterona , Relógios Circadianos , Hipertensão , Rim , Proteínas Circadianas Period , Aldosterona/sangue , Animais , Caderinas/metabolismo , Relógios Circadianos/genética , Expressão Gênica , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo
4.
Am J Physiol Renal Physiol ; 320(4): F596-F607, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33554781

RESUMO

Epithelial Na+ channel (ENaC) blockers elicit acute and substantial increases of urinary pH. The underlying mechanism remains to be understood. Here, we evaluated if benzamil-induced urine alkalization is mediated by an acute reduction in H+ secretion via renal H+-K+-ATPases (HKAs). Experiments were performed in vivo on HKA double-knockout and wild-type mice. Alterations in dietary K+ intake were used to change renal HKA and ENaC activity. The acute effects of benzamil (0.2 µg/g body wt, sufficient to block ENaC) on urine flow rate and urinary electrolyte and acid excretion were monitored in anesthetized, bladder-catheterized animals. We observed that benzamil acutely increased urinary pH (ΔpH: 0.33 ± 0.07) and reduced NH4+ and titratable acid excretion and that these effects were distinctly enhanced in animals fed a low-K+ diet (ΔpH: 0.74 ± 0.12), a condition when ENaC activity is low. In contrast, benzamil did not affect urine acid excretion in animals kept on a high-K+ diet (i.e., during high ENaC activity). Thus, urine alkalization appeared completely uncoupled from ENaC function. The absence of benzamil-induced urinary alkalization in HKA double-knockout mice confirmed the direct involvement of these enzymes. The inhibitory effect of benzamil was also shown in vitro for the pig α1-isoform of HKA. These results suggest a revised explanation of the benzamil effect on renal acid-base excretion. Considering the conditions used here, we suggest that it is caused by a direct inhibition of HKAs in the collecting duct and not by inhibition of the ENaC function.NEW & NOTEWORTHY Bolus application of epithelial Na+ channel (EnaC) blockers causes marked and acute increases of urine pH. Here, we provide evidence that the underlying mechanism involves direct inhibition of the H+-K+ pump in the collecting duct. This could provide a fundamental revision of the previously assumed mechanism that suggested a key role of ENaC inhibition in this response.


Assuntos
Amilorida/análogos & derivados , Canais Epiteliais de Sódio/efeitos dos fármacos , ATPase Trocadora de Hidrogênio-Potássio/efeitos dos fármacos , Sódio/metabolismo , Amilorida/farmacologia , Animais , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/metabolismo , Camundongos , Natriurese/efeitos dos fármacos , Eliminação Renal/efeitos dos fármacos , Eliminação Renal/fisiologia , Sódio na Dieta/metabolismo
5.
Am J Physiol Renal Physiol ; 319(1): F115-F124, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475134

RESUMO

Maintaining water homeostasis is fundamental for cellular function. Many diseases and drugs affect water balance and plasma osmolality. Water homeostasis studies in small animals require the use of invasive or terminal methods that make intracellular fluid volume and extracellular fluid volume (ECF) monitoring over time stressful and time consuming. We examined the feasibility of monitoring mouse ECF by a noninvasive method using time-domain nuclear magnetic resonance (TD-NMR). This technique allows differentiation of protons in a liquid environment (free fluid) from protons in soft tissues containing a majority of either small molecules (lean) or large molecules (fat). Moreover, this apparatus enables rapid, noninvasive, and repeated measurements on the same animal. We assessed the feasibility of coupling TD-NMR analysis to a longitudinal metabolic cage study by monitoring mice daily. We determined the effect of 24-h water deprivation on mouse body parameters and detected a sequential and overlapping decrease in free fluid and lean mass during water deprivation. Finally, we studied the effect of mineralocorticoids that are known to induce a transient increase in ECF but for which no direct measurements have been performed in mice. We showed, for the first time, that mineralocorticoids induced a transient ~15% increase in free fluid in conscious mice. TD-NMR is, therefore, the first method to allow direct measurement of discrete changes in ECF in conscious small animals. This method allows analysis of kinetic changes to stimuli before investigating with terminal methods and will allow further understanding of fluid disorders.


Assuntos
Desidratação/metabolismo , Líquido Extracelular/metabolismo , Espectroscopia de Ressonância Magnética , Animais , Camundongos , Equilíbrio Hidroeletrolítico
6.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32437627

RESUMO

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Assuntos
Endotelina-1/metabolismo , Hipertensão/metabolismo , Túbulos Renais Coletores/fisiopatologia , Proteínas Circadianas Period/metabolismo , Eliminação Renal/fisiologia , Aldosterona/administração & dosagem , Aldosterona/efeitos adversos , Animais , Relógios Circadianos/fisiologia , Modelos Animais de Doenças , Endotelina-1/urina , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Eliminação Renal/efeitos dos fármacos , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
7.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338037

RESUMO

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Pressão Sanguínea , Ritmo Circadiano , Néfrons/metabolismo , Reabsorção Renal , Sódio/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Feminino , Genótipo , Homeostase , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos Knockout , Fenótipo , Potássio na Dieta/metabolismo , Fatores Sexuais , Fatores de Tempo
8.
Am J Physiol Renal Physiol ; 316(5): F807-F813, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759025

RESUMO

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.


Assuntos
Pressão Sanguínea , Ritmo Circadiano , Canais Epiteliais de Sódio/metabolismo , Hipertensão/prevenção & controle , Néfrons/metabolismo , Proteínas Circadianas Period/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Caseína Quinases/antagonistas & inibidores , Caseína Quinases/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Desoxicorticosterona/análogos & derivados , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Mineralocorticoides , Natriurese , Néfrons/efeitos dos fármacos , Proteínas Circadianas Period/antagonistas & inibidores , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Pirimidinas/farmacologia , Cloreto de Sódio na Dieta , Fatores de Tempo , Xenopus
9.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427705

RESUMO

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Hipertensão/genética , Proteínas Circadianas Period/deficiência , Animais , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloreto de Sódio na Dieta/metabolismo
10.
Am J Physiol Renal Physiol ; 314(6): F1138-F1144, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357420

RESUMO

Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.


Assuntos
Pressão Sanguínea , Ritmo Circadiano , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Natriurese , Proteínas Circadianas Period/metabolismo , Eliminação Renal , Animais , Pressão Sanguínea/genética , Ritmo Circadiano/genética , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/fisiopatologia , Túbulos Renais Distais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Natriurese/genética , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Fenótipo , Eliminação Renal/genética , Cloreto de Sódio na Dieta , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo , Regulação para Cima
11.
Am J Physiol Renal Physiol ; 312(6): F1073-F1080, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179253

RESUMO

Modulation of the epithelial Na+ channel (ENaC) activity in the collecting duct (CD) is an important mechanism for normal Na+ homeostasis. ENaC activity is inversely related to dietary Na+ intake, in part due to inhibitory paracrine purinergic regulation. Evidence suggests that H+,K+-ATPase activity in the CD also influences Na+ excretion. We hypothesized that renal H+,K+-ATPases affect Na+ reabsorption by the CD by modulating ENaC activity. ENaC activity in HKα1 H+,K+-ATPase knockout (HKα1-/-) mice was uncoupled from Na+ intake. ENaC activity on a high-Na+ diet was greater in the HKα1-/- mice than in WT mice. Moreover, dietary Na+ content did not modulate ENaC activity in the HKα1-/- mice as it did in WT mice. Purinergic regulation of ENaC was abnormal in HKα1-/- mice. In contrast to WT mice, where urinary [ATP] was proportional to dietary Na+ intake, urinary [ATP] did not increase in response to a high-Na+ diet in the HKα1-/- mice and was significantly lower than in the WT mice. HKα1-/- mice fed a high-Na+ diet had greater Na+ retention than WT mice and had an impaired dipsogenic response. These results suggest an important role for the HKα1 subunit in the regulation of purinergic signaling in the CD. They are also consistent with HKα1-containing H+,K+-ATPases as important components for the proper regulation of Na+ balance and the dipsogenic response to a high-salt diet. Such observations suggest a previously unrecognized element in Na+ regulation in the CD.


Assuntos
Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/deficiência , Túbulos Renais Coletores/enzimologia , Eliminação Renal , Reabsorção Renal , Sódio na Dieta/metabolismo , Trifosfato de Adenosina/urina , Aldosterona/sangue , Animais , Genótipo , ATPase Trocadora de Hidrogênio-Potássio/genética , Homeostase , Hipernatremia/sangue , Hipernatremia/enzimologia , Hipernatremia/genética , Hipernatremia/urina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais , Fatores de Tempo , Vasopressinas/sangue
12.
Am J Physiol Renal Physiol ; 309(12): F1026-34, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26400543

RESUMO

Aldosterone increases blood pressure (BP) by stimulating sodium (Na) reabsorption within the distal nephron and collecting duct (CD). Aldosterone also stimulates endothelin-1 (ET-1) production that acts within the CD to inhibit Na reabsorption via a negative feedback mechanism. We tested the hypothesis that this renal aldosterone-endothelin feedback system regulates electrolyte balance and BP by comparing the effect of a high-salt (NaCl) diet and mineralocorticoid stimulation in control and CD-specific ET-1 knockout (CD ET-1 KO) mice. Metabolic balance and radiotelemetric BP were measured before and after treatment with desoxycorticosterone pivalate (DOCP) in mice fed a high-salt diet with saline to drink. CD ET-1 KO mice consumed more high-salt diet and saline and had greater urine output than controls. CD ET-1 KO mice exhibited increased BP and greater fluid retention and body weight than controls on a high-salt diet. DOCP with high-salt feeding further increased BP in CD ET-1 KO mice, and by the end of the study the CD ET-1 KO mice were substantially hypernatremic. Unlike controls, CD ET-1 KO mice failed to respond acutely or escape from DOCP treatment. We conclude that local ET-1 production in the CD is required for the appropriate renal response to Na loading and that lack of local ET-1 results in abnormal fluid and electrolyte handling when challenged with a high-salt diet and with DOCP treatment. Additionally, local ET-1 production is necessary, under these experimental conditions, for renal compensation to and escape from the chronic effects of mineralocorticoids.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Endotelina-1/metabolismo , Mineralocorticoides/farmacologia , Sódio/metabolismo , Animais , Endotelina-1/genética , Hipertensão/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Endotelina B/metabolismo , Cloreto de Sódio na Dieta/metabolismo
13.
Am J Physiol Renal Physiol ; 305(12): F1697-704, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154698

RESUMO

The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na(+) transport genes in the collecting duct, including the α-subunit of the renal epithelial Na(+) channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3ß-dehydrogenase isomerase (3ß-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na(+) retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3ß-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3ß-HSD. We postulated that mice with reduced Per1 would have a renal Na(+)-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na(+) compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na(+) retention.


Assuntos
Aldosterona/metabolismo , Rim/metabolismo , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Criptocromos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética , RNA Interferente Pequeno/farmacologia
14.
Am J Physiol Renal Physiol ; 305(4): F568-73, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23698114

RESUMO

The collecting duct (CD) is a major renal site for the hormonal regulation of Na homeostasis and is critical for systemic arterial blood pressure control. Our previous studies demonstrated that the endothelin-1 gene (edn1) is an early response gene to the action of aldosterone. Because aldosterone and endothelin-1 (ET-1) have opposing actions on Na reabsorption (JNa) in the kidney, we postulated that stimulation of ET-1 by aldosterone acts as a negative feedback mechanism, acting locally within the CD. Aldosterone is known to increase JNa in the CD, in part, by stimulating the epithelial Na channel (ENaC). In contrast, ET-1 increases Na and water excretion through its binding to receptors in the CD. To date, direct measurement of the quantitative effect of ET-1 on transepithelial JNa in the isolated in vitro microperfused mouse CD has not been determined. We observed that the CD exhibits substantial JNa in male and female mice that is regulated, in part, by a benzamil-sensitive pathway, presumably ENaC. ENaC-mediated JNa is greater in the cortical CD (CCD) than in the outer medullary CD (OMCD); however, benzamil-insensitive JNa is present in the CCD and not in the OMCD. In the presence of ET-1, ENaC-mediated JNa is significantly inhibited. Blockade of either ETA or ETB receptor restored JNa to control rates; however, only ETA receptor blockade restored a benzamil-sensitive component of JNa. We conclude 1) Na reabsorption is mediated by ENaC in the CCD and OMCD and also by an ENaC-independent mechanism in the CCD; and 2) ET-1 inhibits JNa in the CCD through both ETA and ETB receptor-mediated pathways.


Assuntos
Endotelina-1/fisiologia , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Sódio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Endotelina-1/farmacologia , Feminino , Humanos , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos
15.
Hypertension ; 59(6): 1151-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22526258

RESUMO

The circadian clock protein period 1 (Per1) contributes to the regulation of expression of the α subunit of the renal epithelial sodium channel at the basal level and in response to the mineralocorticoid hormone aldosterone. The goals of the present study were to define the role of Per1 in the regulation of additional renal sodium handling genes in cortical collecting duct cells and to evaluate blood pressure (BP) in mice lacking functional Per1. To determine whether Per1 regulates additional genes important in renal sodium handling, a candidate gene approach was used. Immortalized collecting duct cells were transfected with a nontarget small interfering RNA or a Per1-specific small interfering RNA. Expression of the genes for α-epithelial sodium channel and Fxyd5, a positive regulator of Na, K-ATPase activity, decreased in response to Per1 knockdown. Conversely, mRNA expression of caveolin 1, Ube2e3, and ET-1, all negative effectors of epithelial sodium channel, was induced after Per1 knockdown. These results led us to evaluate BP in Per1 KO mice. Mice lacking Per1 exhibit significantly reduced BP and elevated renal ET-1 levels compared with wild-type animals. Given the established role of renal ET-1 in epithelial sodium channel inhibition and BP control, elevated renal ET-1 is one possible explanation for the lower BP observed in Per1 KO mice. These data support a role for the circadian clock protein Per1 in the coordinate regulation of genes involved in renal sodium reabsorption. Importantly, the lower BP observed in Per1 KO mice compared with wild-type mice suggests a role for Per1 in BP control as well.


Assuntos
Pressão Sanguínea/fisiologia , Túbulos Renais Coletores/metabolismo , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , Animais , Pressão Sanguínea/genética , Western Blotting , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Endotelina-1/genética , Endotelina-1/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Transporte de Íons/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Genéticos , Proteínas Circadianas Period/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
J Am Soc Nephrol ; 22(1): 49-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21164026

RESUMO

In the renal collecting duct, mineralocorticoids drive Na(+) reabsorption, K(+) secretion, and H(+) secretion through coordinated actions on apical and basolateral transporters. Whether mineralocorticoids act through H(+),K(+)-ATPases to maintain K(+) and acid-base homeostasis is unknown. Here, treatment of mice with the mineralocorticoid desoxycorticosterone pivalate (DOCP) resulted in weight gain, a decrease in blood [K(+)] and [Cl(-)], and an increase in blood [Na(+)] and [HCO(3)(-)]. DOCP treatment increased the rate of H(+),K(+)-ATPase-mediated H(+) secretion in intercalated cells of the inner cortical collecting duct. mRNA expression of the catalytic subunit HKα(1) did not significantly change, whereas HKα(2) mRNA expression dramatically increased in the outer and inner medulla of DOCP-treated mice. A high-K(+) diet abrogated this increase in renal HKα(2) expression, showing that DOCP-mediated stimulation of HKα(2) expression depends on dietary K(+) intake. DOCP treatment of mice lacking HKα(1) (HKα(1)(-/-)) resulted in greater urinary Na(+) retention than observed in either wild-type mice or mice lacking both HKα(1) and HKα(2) (HKα(1,2)(-/-)). DOCP-treated HKα(1,2)(-/-) mice exhibited a lower blood [HCO(3)(-)] and less Na(+) and K(+) retention than either wild-type or HKα(1)(-/-) mice. Taken together, these results indicate that H(+),K(+)-ATPases-especially the HKα(2)-containing H(+),K(+)-ATPases-play an important role in the effects of mineralocorticoids on K(+), acid-base, and Na(+) balance.


Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Desoxicorticosterona/análogos & derivados , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Mineralocorticoides/farmacologia , Equilíbrio Ácido-Base/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia , Feminino , Hidrogênio/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/sangue , RNA Mensageiro/metabolismo , Sódio/sangue , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
17.
Biochim Biophys Acta ; 1799(9): 622-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20868778

RESUMO

The epithelial sodium channel (ENaC) mediates the fine-tuned regulation of external sodium (Na) balance. The circadian clock protein Period 1 (Per1) is an aldosterone-induced gene that regulates mRNA expression of the rate-limiting alpha subunit of ENaC (αENaC). In the present study, we examined the effect of Per1 on αENaC in the cortex, the site of greatest ENaC activity in the collecting duct, and examined the mechanism of Per1 action on αENaC. Compared to wild type mice, Per1 knockout mice exhibited a 50% reduction of steady state αENaC mRNA levels in the cortex. Importantly, siRNA-mediated knockdown of Per1 decreased total αENaC protein levels in mpkCCD(c14) cells, a widely used model of the murine cortical collecting duct (CCD). Per1 regulated basal αENaC expression and participated in the aldosterone-mediated regulation of αENaC in mpkCCD(c14) cells. Because circadian clock proteins mediate their effects as part of multi-protein complexes at E-box response elements in the promoters of target genes, the ability of Per1 to interact with these sequences from the αENaC promoter was tested. For the first time, we show that Per1 and Clock are present at an E-box response element found in the αENaC promoter. Together these data support an important role for the circadian clock protein Per1 in the direct regulation of αENaC transcription and have important implications for understanding the role of the circadian clock in the regulation of renal function.


Assuntos
Canais Epiteliais de Sódio/genética , Regulação da Expressão Gênica , Proteínas Circadianas Period/fisiologia , Aldosterona/farmacologia , Animais , Linhagem Celular , Elementos E-Box/efeitos dos fármacos , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/fisiologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
18.
Am J Physiol Renal Physiol ; 298(2): F408-15, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19923411

RESUMO

In the collecting duct (CD), H-K-ATPases function in cation reabsorption and H secretion. This study evaluated H-K-ATPase-mediated H secretion along the mouse CD, measured as EIPA- and luminal bafilomycin A(1)-insensitive intracellular pH (pH(i)) recovery from acute H loading (NH(4)) using BCECF. pH(i) recovery was measured in 1) microperfused cortical, outer medullary, and inner medullary CDs (CCD, OMCD, and IMCD) from C57BL/6J mice fed a normal diet and 2) common murine CD cell lines. H-K-ATPase activity along the native, microperfused CD was greatest in the CCD, less in the OMCD, and least in the IMCD (0.10 +/- 0.02, 0.04 +/- 0.01, and 0.01 +/- 0.002 U/min, respectively). H-K-ATPase activity was 0.30 +/- 0.03 and 0.26 +/- 0.03 in A- and B-type ICs, respectively, and was sensitive to Sch-28080 or ouabain. pH(i) recovery was greatest in the OMCD(1) cell line (0.25 +/- 0.01) and less in mpkCCD(c14) (0.17 +/- 0.01), mIMCD-K2 (0.12 +/- 0.01), and mIMCD-3 (0.05 +/- 0.01) cells. EIPA inhibited the majority of pH(i) recovery in these cells (100%, 64%, 75%, and 80% in mpkCCD(c14), OMCD(1), mIMCD-K2, and mIMCD-3, respectively). In OMCD(1) cells, where EIPA-insensitive pH(i) recovery was greatest, H-K-ATPase activity was 0.10 +/- 0.01 and was significantly inhibited (80%) by Sch-28080. We conclude that 1) H-K-ATPase-mediated H secretion in the native mouse CD is greatest in the ICs of the CCD, 2) A- and B-type ICs possess HKalpha(1) and HKalpha(2) H-K-ATPase activity, and 3) the OMCD(1) cell line best exhibits H-K-ATPase.


Assuntos
Ácidos/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Feminino , ATPase Trocadora de Hidrogênio-Potássio/genética , Concentração de Íons de Hidrogênio , Imidazóis/farmacologia , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Isoenzimas/genética , Córtex Renal/citologia , Medula Renal/citologia , Túbulos Renais Coletores/citologia , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ouabaína/farmacologia , Perfusão/métodos , Inibidores da Bomba de Prótons , RNA Mensageiro/metabolismo , Distribuição Tecidual
19.
Am J Physiol Renal Physiol ; 298(1): F12-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19640897

RESUMO

The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H(+)-K(+)-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKalpha(1) and HKalpha(2) knockout mice suggest that the H(+)-K(+)-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKalpha(1) and HKalpha(2) suggest important roles for the renal H(+)-K(+)-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKalpha(1) and HKalpha(2) and provide a means to study the specific cation transport properties of H(+)-K(+)-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H(+)-K(+) ATPases in renal physiology.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Rim/enzimologia , Equilíbrio Ácido-Base/fisiologia , Animais , Transporte Biológico/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/genética , Rim/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Sódio/metabolismo
20.
J Biol Chem ; 284(44): 30087-96, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19638349

RESUMO

Aldosterone and endothelin-1 (ET-1) act on collecting duct cells of the kidney and are important regulators of renal sodium transport and cardiovascular physiology. We recently identified the ET-1 gene (edn1) as a novel aldosterone-induced transcript. However, aldosterone action on edn1 has not been characterized at the present time. In this report, we show that aldosterone stimulated edn1 mRNA in acutely isolated rat inner medullary collecting duct cells ex vivo and ET-1 peptide in rat inner medulla in vivo. Aldosterone induction of edn1 mRNA occurred in cortical, outer medullary, and inner medullary collecting duct cells in vitro. Inspection of the edn1 promoter revealed two putative hormone response elements. Levels of heterogeneous nuclear RNA synthesis demonstrated that edn1 mRNA stimulation occurred at the level of transcription. RNA knockdowns corroborated pharmacological studies and demonstrated both mineralocorticoid receptor and glucocorticoid receptor participated in this response. Aldosterone resulted in dose-dependent nuclear translocation and binding of mineralocorticoid receptor and glucocorticoid receptor to the edn1 hormone response elements. Hormone receptors mediated the association of chromatin remodeling complexes, histone modification, and RNA polymerase II at the edn1 promoter. Direct interaction between aldosterone and ET-1 has important implications for renal and cardiovascular function.


Assuntos
Aldosterona/fisiologia , Endotelina-1/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Medula Renal , Túbulos Renais Coletores , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro , Ratos , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...