Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 56(3): 542-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23238790

RESUMO

AIMS/HYPOTHESIS: The paucity of information on the epigenetic barriers that are blocking reprogramming protocols, and on what makes a beta cell unique, has hampered efforts to develop novel beta cell sources. Here, we aimed to identify enhancers in pancreatic islets, to understand their developmental ontologies, and to identify enhancers unique to islets to increase our understanding of islet-specific gene expression. METHODS: We combined H3K4me1-based nucleosome predictions with pancreatic and duodenal homeobox 1 (PDX1), neurogenic differentiation 1 (NEUROD1), v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MAFA) and forkhead box A2 (FOXA2) occupancy data to identify enhancers in mouse islets. RESULTS: We identified 22,223 putative enhancer loci in in vivo mouse islets. Our validation experiments suggest that nearly half of these loci are active in regulating islet gene expression, with the remaining regions probably poised for activity. We showed that these loci have at least nine developmental ontologies, and that islet enhancers predominately acquire H3K4me1 during differentiation. We next discriminated 1,799 enhancers unique to islets and showed that these islet-specific enhancers have reduced association with annotated genes, and identified a subset that are instead associated with novel islet-specific long non-coding RNAs (lncRNAs). CONCLUSIONS/INTERPRETATIONS: Our results indicate that genes with islet-specific expression and function tend to have enhancers devoid of histone methylation marks or, less often, that are bivalent or repressed, in embryonic stem cells and liver. Further, we identify a subset of enhancers unique to islets that are associated with novel islet-specific genes and lncRNAs. We anticipate that these data will facilitate the development of novel sources of functional beta cell mass.


Assuntos
Ilhotas Pancreáticas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Transativadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 104(25): 10500-5, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17563382

RESUMO

During pancreas development, both the exocrine and endocrine lineages differentiate from a common pool of progenitor cells with similarities to mature pancreatic duct cells. A small set of transcription factors, including Tcf2, Onecut1, and Foxa2, has been identified in these pancreatic progenitor cells. The Sry/HMG box transcription factor Sox9 is also expressed in the early pancreatic epithelium and is required for normal pancreatic exocrine and endocrine development in humans. In this study, we found Sox9 in mice specifically expressed with the other progenitor transcription factors in both pancreatic progenitor cells and duct cells in the adult pancreas. Sox9 directly bound to all three genes in vitro and in intact cells, and regulated their expression. In turn, both Foxa2 and Tcf2 regulated Sox9 expression, demonstrating feedback circuits between these genes. Furthermore, Sox9 activated the expression of the proendocrine factor Neurogenin3, which also depends on the other members of the progenitor transcription network. These studies indicate that Sox9 plays a dual role in pancreatic progenitor cells: both maintaining a stable transcriptional network and supporting the programs by which these cells differentiate into distinct lineages.


Assuntos
Redes Reguladoras de Genes/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Pâncreas/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Linhagem Celular , Genes Reporter , Proteínas de Grupo de Alta Mobilidade/genética , Imuno-Histoquímica , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos , Modelos Biológicos , Interferência de RNA , Fatores de Transcrição SOX9 , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transfecção
3.
Diabetes ; 50(5): 1004-11, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11334402

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone that is released postprandially from the small intestine and acts in concert with glucagon-like peptide (GLP)-1 to potentiate glucose-induced insulin secretion from the pancreatic beta-cell. In type 2 diabetes, there is a decreased responsiveness of the pancreas to GIP; however, the insulin response to GLP-1 remains intact. The literature suggests that the ineffectiveness of GIP in type 2 diabetes may be a result of chronic homologous desensitization of the GIP receptor. Yet, there has been no conclusive evidence suggesting that GIP levels are elevated in diabetes. The hypothesis of the present study is that one cause of decreased responsiveness to GIP in type 2 diabetes is an inappropriate expression of the GIP receptor in the pancreatic islet. This hypothesis was tested using a strain of diabetic fatty Zucker rats. The obese rats displayed basal GIP levels similar to the control animals; however, they were unresponsive to a GIP infusion (4 pmol.min(-1). kg(-1)), whereas the lean animals displayed a significant reduction in blood glucose (GIP levels, 50% control after 60 min, P < 0.05) as well as a significant increase in circulating insulin. GIP also potently stimulated first-phase insulin secretion from isolated perifused islets (10.3 +/- 3.0 x basal), and GIP and GLP-1 potentiated insulin secretion from the perfused pancreas (6 x control area under the curve [AUC]) from lean animals. GIP yielded no significant effect in the Vancouver diabetic fatty Zucker (VDF) rat pancreases, whereas GLP-1 elicited an eightfold increase of insulin secretion from the perfused VDF pancreas. Islets from lean animals subjected to static incubations with GIP showed a 2.2-fold increase in cAMP, whereas GIP failed to increase islet cAMP in the VDF islets. Finally, the expression of both GIP receptor mRNA and protein was decreased in islets from VDF rats. These data suggest that the decreased effectiveness of GIP in the VDF rat and in type 2 diabetes may be a result of a decreased receptor expression in the islet.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Receptores de Superfície Celular , Receptores dos Hormônios Gastrointestinais/genética , Animais , Glicemia/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/fisiologia , Teste de Tolerância a Glucose , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/fisiopatologia , Cinética , Perfusão , RNA Mensageiro/genética , Ratos , Ratos Zucker , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores para Leptina , Valores de Referência , Transcrição Gênica
4.
Endocrinology ; 140(1): 398-404, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9886851

RESUMO

GIP is an important insulinotropic hormone (incretin) that has also been implicated in fat metabolism. There is controversy regarding the actions of GIP on adipocytes. In the current study, the existence of GIP receptors and effects of GIP on lipolysis were studied in differentiated 3T3-L1 cells. GIP receptor messenger RNA was detected by RT-PCR and RNase protection assay. Receptors were detected in binding studies (IC50 26.7 +/- 0.7 nM). GIP stimulated glycerol release with an EC50 of 3.28 +/- 0.63 nM. GIP (10(-9)-10(-7) M) +/- IBMX increased cAMP production by 1180-2246%. The adenylyl cyclase inhibitor MDL 12330A (10(-4) M) inhibited GIP-induced glycerol production by >90%, and reduced cAMP responses to basal. Preincubation of 3T3-L1 cells with insulin inhibited glycerol responses to GIP, and the inhibitory effect of insulin was blocked by the phosphatidylinositol 3'-kinase inhibitor, wortmannin. It is concluded that GIP stimulates glycerol release in 3T3-L1 cells primarily via stimulation of cAMP production, and that insulin antagonizes GIP-induced lipolysis in a wortmannin-sensitive fashion. It is suggested that effects of GIP on fat metabolism in vivo may depend upon the circulating insulin level, and that meal-released GIP may elevate circulating fatty acids, thus optimizing pancreatic beta-cell responsiveness to stimulation by glucose and GIP.


Assuntos
Androstadienos/farmacologia , Polipeptídeo Inibidor Gástrico/farmacologia , Antagonistas da Insulina/farmacologia , Insulina/farmacologia , Lipólise/efeitos dos fármacos , Células 3T3 , Inibidores de Adenilil Ciclases , Animais , Diferenciação Celular , AMP Cíclico/biossíntese , Camundongos , RNA Mensageiro/metabolismo , Receptores dos Hormônios Gastrointestinais/biossíntese , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Wortmanina
5.
Nat Genet ; 16(1): 44-53, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9140394

RESUMO

Huntington disease (HD) is associated with the expansion of a polyglutamine tract, greater than 35 repeats, in the HD gene product, huntingtin. Here we describe a novel huntingtin interacting protein, HIP1, which co-localizes with huntingtin and shares sequence homology and biochemical characteristics with Sla2p, a protein essential for function of the cytoskeleton in Saccharomyces cerevisiae. The huntingtin-HIP1 interaction is restricted to the brain and is inversely correlated to the polyglutamine length in huntingtin. This provides the first molecular link between huntingtin and the neuronal cytoskeleton and suggests that, in HD, loss of normal huntingtin-HIP1 interaction may contribute to a defect in membrane-cytoskeletal integrity in the brain.


Assuntos
Encéfalo/fisiologia , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Western Blotting , Encéfalo/citologia , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Sistema Nervoso Central/metabolismo , Mapeamento Cromossômico , Cromossomos Humanos Par 7 , Clonagem Molecular , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Helminto/genética , Humanos , Proteína Huntingtina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Peptídeos/química , Peptídeos/metabolismo , Testes de Precipitina , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Frações Subcelulares , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA