Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771091

RESUMO

Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.


Assuntos
Aclimatação , Anfíbios , Peixes , Água Doce , Aquecimento Global , Animais , Aclimatação/fisiologia , Peixes/fisiologia , Anfíbios/fisiologia , Anfíbios/crescimento & desenvolvimento , Filogenia , Mudança Climática , Temperatura
2.
Proc Biol Sci ; 290(2011): 20232223, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964521

RESUMO

The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Evolução Biológica , Mamíferos/microbiologia , Anuros , RNA Ribossômico 16S
3.
iScience ; 26(11): 108109, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867936

RESUMO

The host-microbiome associations occurring on the skin of vertebrates significantly influence hosts' health. However, the factors mediating their interactions remain largely unknown. Herein, we used integrated technical and ecological frameworks to investigate the skin metabolites sustaining a beneficial symbiosis between tree frogs and bacteria. We characterize macrocyclic acylcarnitines as the major metabolites secreted by the frogs' skin and trace their origin to an enzymatic unbalance of carnitine palmitoyltransferases. We found that these compounds colocalize with bacteria on the skin surface and are mostly represented by members of the Pseudomonas community. We showed that Pseudomonas sp. MPFS isolated from frogs' skin can exploit acylcarnitines as its sole carbon and nitrogen source, and this metabolic capability is widespread in Pseudomonas. We summarize frogs' multiple mechanisms to filter environmental bacteria and highlight that acylcarnitines likely evolved for another function but were co-opted to provide nutritional benefits to the symbionts.

4.
Biol Rev Camb Philos Soc ; 98(3): 727-746, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36598050

RESUMO

Anthropogenic habitat disturbance is fundamentally altering patterns of disease transmission and immunity across the vertebrate tree of life. Most studies linking anthropogenic habitat change and disease focus on habitat loss and fragmentation, but these processes often lead to a third process that is equally important: habitat split. Defined as spatial separation between the multiple classes of natural habitat that many vertebrate species require to complete their life cycles, habitat split has been linked to population declines in vertebrates, e.g. amphibians breeding in lowland aquatic habitats and overwintering in fragments of upland terrestrial vegetation. Here, we link habitat split to enhanced disease risk in amphibians (i) by reviewing the biotic and abiotic forces shaping elements of immunity and (ii) through a spatially oriented field study focused on tropical frogs. We propose a framework to investigate mechanisms by which habitat split influences disease risk in amphibians, focusing on three broad host factors linked to immunity: (i) composition of symbiotic microbial communities, (ii) immunogenetic variation, and (iii) stress hormone levels. Our review highlights the potential for habitat split to contribute to host-associated microbiome dysbiosis, reductions in immunogenetic repertoire, and chronic stress, that often facilitate pathogenic infections and disease in amphibians and other classes of vertebrates. We highlight that targeted habitat-restoration strategies aiming to connect multiple classes of natural habitats (e.g. terrestrial-freshwater, terrestrial-marine, marine-freshwater) could enhance priming of the vertebrate immune system through repeated low-load exposure to enzootic pathogens and reduced stress-induced immunosuppression.


Assuntos
Anfíbios , Ecossistema , Animais , Anuros , Estágios do Ciclo de Vida
5.
Microb Ecol ; 86(1): 699-712, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35802173

RESUMO

Ants have long been known for their associations with other taxa, including macroscopic fungi and symbiotic bacteria. Recently, many ant species have had the composition and function of their bacterial communities investigated. Due to its behavioral and ecological diversity, the subfamily Ponerinae deserves more attention regarding its associated microbiota. Here, we used the V4 region of the 16S rRNA gene to characterize the bacterial communities of Odontomachus chelifer (ground-nesting) and Odontomachus hastatus (arboreal), two ponerine trap-jaw species commonly found in the Brazilian savanna ("Cerrado") and Atlantic rainforest. We investigated habitat effects (O. chelifer in the Cerrado and the Atlantic rainforest) and species-specific effects (both species in the Atlantic rainforest) on the bacterial communities' structure (composition and abundance) in two different body parts: cuticle and gaster. Bacterial communities differed in all populations studied. Cuticular communities were more diverse, while gaster communities presented variants common to other ants, including Wolbachia and Candidatus Tokpelaia hoelldoblerii. Odontomachus chelifer populations presented different communities in both body parts, highlighting the influence of habitat type. In the Atlantic rainforest, the outcome depended on the body part targeted. Cuticular communities were similar between species, reinforcing the habitat effect on bacterial communities, which are mainly composed of environmentally acquired taxa. Gaster communities, however, differed between the two Odontomachus species, suggesting species-specific effects and selective filters. Unclassified Firmicutes and uncultured Rhizobiales variants are the main components accounting for the observed differences. Our study indicates that both host species and habitat act synergistically, but to different degrees, to shape the bacterial communities in these Odontomachus species.


Assuntos
Formigas , Animais , RNA Ribossômico 16S/genética , Ecossistema , Brasil , Bactérias/genética
6.
Anim Microbiome ; 4(1): 69, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36582011

RESUMO

Microbial diversity positively influences community resilience of the host microbiome. However, extinction risk factors such as habitat specialization, narrow environmental tolerances, and exposure to anthropogenic disturbance may homogenize host-associated microbial communities critical for stress responses including disease defense. In a dataset containing 43 threatened and 90 non-threatened amphibian species across two biodiversity hotspots (Brazil's Atlantic Forest and Madagascar), we found that threatened host species carried lower skin bacterial diversity, after accounting for key environmental and host factors. The consistency of our findings across continents suggests the broad scale at which low bacteriome diversity may compromise pathogen defenses in species already burdened with the threat of extinction.

7.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205610

RESUMO

Amphibians are increasingly threatened worldwide, but the availability of genomic resources that could be crucial for implementing informed conservation practices lags well behind that for other vertebrate groups. Here, we describe draft de novo genome, mitogenome, and transcriptome assemblies for the Neotropical leaf-frog Phyllomedusa bahiana native to the Brazilian Atlantic Forest and Caatinga. We used a combination of PacBio long reads and Illumina sequencing to produce a 4.74-Gbp contig-level genome assembly, which has a contiguity comparable to other recent nonchromosome level assemblies. The assembled mitogenome comprises 16,239 bp and the gene content and arrangement are similar to other Neobratrachia. RNA-sequencing from 8 tissues resulted in a highly complete (86.3%) reference transcriptome. We further use whole-genome resequencing data from P. bahiana and from its sister species Phyllomedusa burmeisteri, to demonstrate how our assembly can be used as a backbone for population genomics studies within the P. burmeisteri species group. Our assemblies thus represent important additions to the catalog of genomic resources available from amphibians.


Assuntos
Genoma , Transcriptoma , Animais , Genômica/métodos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anuros/genética , Folhas de Planta
8.
Anim Microbiome ; 4(1): 40, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672870

RESUMO

BACKGROUND: Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil's Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species. RESULTS: Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization. CONCLUSIONS: Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.

9.
J Therm Biol ; 106: 103233, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35636893

RESUMO

Temperature-induced developmental plasticity could allow amphibian larvae to complete metamorphosis successfully despite new thermal challenges and increased desiccation risk due to climate change. Here we investigated how the capacity for temperature-induced developmental plasticity varies with latitude and whether population-specific biogeographic background accounts for the different degree of plastic responses to temperature. We carried out a combined analysis based on the data from 150 studies (93 articles) performed on 64 amphibian species. We collected empirical data for age and size at metamorphosis in amphibian larvae acclimated to different temperatures during development and found that all larvae from all populations in these studies revealed a change in metamorphic traits with a given change in temperature and thus, were able to exhibit temperature-induced developmental plasticity. Age at metamorphosis was more affected by temperature than size at metamorphosis. Age and size at the onset of metamorphosis were generally lowest at warmest temperatures during development. Furthermore, populations from tropical latitudes were less sensitive to a change in developmental temperature compared to populations from higher latitudes. Accordingly, we suggest tropical populations to be the most vulnerable to increasing temperatures during metamorphosis. Our analyses reveal biases with respect to taxonomy, biogeographic distribution of species, and study design. Data from tropical populations are underrepresented and thus, the capacity for developmental plasticity of the most threatened species probably remains poorly understood. Future studies should focus on under-represented regions, most threatened species, and include a broader range of temperatures during development in order to make robust projections on future sensitivity of populations to climate change.


Assuntos
Anfíbios , Metamorfose Biológica , Aclimatação , Animais , Larva , Temperatura
10.
Zootaxa ; 5100(4): 521-540, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35391061

RESUMO

Pristimantis is the most diverse Neotropical genus of terrestrial vertebrates and is distributed from Central America to Argentina. The last few years have seen the description of several new species of the genus, suggesting that its diversity is still underestimated. After decades of uncertainties about the taxonomic status of populations of Pristimantis from the Brejos de Altitude of the state of Cear, Northeast Brazil, we finally found morphological, acoustic and molecular evidence confirming their distinctiveness from other Atlantic Forest species. The new species is characterized by the following: shagreen dorsal skin with small-scattered tubercles, absence of dorsolateral fold, presence of tarsal fold, advertisement call composed of 18 pulsed notes, (25 pulses per note), and dominant frequency located in the second energy band, ranging from 36174220 Hz. Phylogenetic analysis placed the new species in the Pristimantis conspicillatus species group and the sister lineage of the Atlantic Forest clade comprising P. ramagii, P. paulodutrai and the P. vinhai species complex.


Assuntos
Altitude , Anuros , Animais , Brasil , Florestas , Filogenia
11.
Mol Phylogenet Evol ; 169: 107398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031468

RESUMO

Phylogeographic studies primarily focus on the major role of landscape topography in driving lineage diversification. However, populational phylogeographic breaks may also occur as a result of either niche conservatism or divergence, in the absence of geographic barriers to gene flow. Furthermore, these two factors are not mutually exclusive and can act in concert, making it challenging to evaluate their relative importances on explaining genetic variation in nature. Herein, we use sequences of two mitochondrial and four nuclear genes to investigate the timing and diversification patterns of species pertaining to the Leptodactylus latrans complex, which harbors four morphologically cryptic species with broad distributions across environmental gradients in eastern South America. The origin of this species complex dates back to the late Miocene (ca. 5.5 Mya), but most diversification events occurred synchronically during the late Pleistocene likely as the result of ecological divergence driven by Quaternary climatic oscillations. Further, significant patterns of environmental niche divergences among species in the L. latrans complex imply that ecological isolation is the primary mode of genetic diversification, mostly because phylogenetic breaks are associated with environmental transitions rather than topographic barriers at both species and populational scales. We provided new insights about diversification patterns and processes within a species complex of broadly and continuously distributed group of frogs along South America.


Assuntos
Anuros , Fluxo Gênico , Animais , Anuros/genética , Manteiga , Variação Genética , Filogenia , Filogeografia
12.
ISME J ; 16(3): 788-800, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601502

RESUMO

The molecular bases for the symbiosis of the amphibian skin microbiome with its host are poorly understood. Here, we used the odor-producer Pseudomonas sp. MPFS and the treefrog Boana prasina as a model to explore bacterial genome determinants and the resulting mechanisms facilitating symbiosis. Pseudomonas sp. MPFS and its closest relatives, within a new clade of the P. fluoresens Group, have large genomes and were isolated from fishes and plants, suggesting environmental plasticity. We annotated 16 biosynthetic gene clusters from the complete genome sequence of this strain, including those encoding the synthesis of compounds with known antifungal activity and of odorous methoxypyrazines that likely mediate sexual interactions in Boana prasina. Comparative genomics of Pseudomonas also revealed that Pseudomonas sp. MPFS and its closest relatives have acquired specific resistance mechanisms against host antimicrobial peptides (AMPs), specifically two extra copies of a multidrug efflux pump and the same two-component regulatory systems known to trigger adaptive resistance to AMPs in P. aeruginosa. Subsequent molecular modeling indicated that these regulatory systems interact with an AMP identified in Boana prasina through the highly acidic surfaces of the proteins comprising their sensory domains. In agreement with a symbiotic relationship and a highly selective antibacterial function, this AMP did not inhibit the growth of Pseudomonas sp. MPFS but inhibited the growth of another Pseudomonas species and Escherichia coli in laboratory tests. This study provides deeper insights into the molecular interaction of the bacteria-amphibian symbiosis and highlights the role of specific adaptive resistance toward AMPs of the hosts.


Assuntos
Bactérias , Simbiose , Animais , Anuros , Bactérias/genética , Genoma Bacteriano , Genômica
13.
Mol Phylogenet Evol ; 166: 107220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481948

RESUMO

Species delimitation can be challenging and affected by subjectivity. Sibling lineages that occur in sympatry constitute good candidates for species delimitation regardless of the adopted species concept. The Thoropa miliaris + T. taophora species complex exhibits high genetic diversity distributed in several lineages that occur sympatrically in the southeastern Atlantic Forest of Brazil. We used 414 loci obtained by anchored hybrid enrichment to characterize genetic variation in the Thoropa miliaris species group (T. saxatilis, T megatympanum, T. miliaris, and T. taophora), combining assignment analyses with traditional and coalescent phylogeny reconstruction. We also investigated evolutionary independence in co-occurring lineages by estimating gene flow, and validated lineages under the multispecies coalescent. We recovered most previously described lineages as unique populations in assignment analyses; exceptions include two lineages within T. miliaris that are further substructured, and the merging of all T. taophora lineages. We found very low probabilities of gene flow between sympatric lineages, suggesting independent evolution. Species tree inferences and species delimitation yielded resolved relationships and indicate that all lineages constitute putative species that diverged during the Pliocene and Pleistocene, later than previously estimated.


Assuntos
Anuros , Simpatria , Animais , Florestas , Filogenia , Ranidae
14.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221375, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403632

RESUMO

Abstract Here, we summarize examples of significant advances in amphibian research supported by the São Paulo Research Foundation (FAPESP), focusing on recent discoveries in the fields of community ecology, habitat change, infection diseases, and multipurpose DNA sequencing. We demonstrated that FAPESP has been fundamental not only by directly funding research projects and scholarships, but also through its science training policy, fostering international collaborations with world-class research institutions, improving and consolidating new lines of research that often depended on a synergetic combination of different knowledge and complex tools. We emphasized that future studies will continue to focus on basic questions, such as description of new species, as well as taxonomic and systematic corrections. Furthermore, we also expect that there will be a strong integration among different disciplines using novel bioinformatics tools and modeling approaches, such as machine learning. These new approaches will be critical to further develop our understanding of foundational questions of amphibian life-history trait variation, disease transmission, community assembly, biogeography, and population forecasts under different global change scenarios such as agricultural expansion, agrochemical use, habitat loss, and climate change.


Resumo No presente estudo apresentamos exemplos de avanços significativos nas pesquisas com anfíbios financiadas pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), focando em descobertas recentes nos campos de ecologia de comunidades, modificação do habitat, doenças infecciosas e o sequenciamento de DNA com múltiplos propósitos. Demonstramos que a FAPESP tem sido fundamental não somente pelo financiamento direto de projetos de pesquisa e bolsas de estudo, mas também através de sua política de formação científica, fomentando colaborações internacionais com instituições de pesquisa de excelência mundial, melhorando e consolidando novas linhas de pesquisa que frequentemente dependem da combinação sinérgica entre diferentes linhas de conhecimento e ferramentas complexas. Enfatizamos que futuros estudos continuem com foco em questões básicas, como a descrição de novas espécies, bem como correções taxonômicas e sistemáticas. Além disso, esperamos uma forte integração entre diferentes disciplinas usando novas ferramentas de bioinformática e abordagens de modelagem, como o aprendizado de máquina. Essas novas abordagens serão críticas para desenvolver ainda mais nossa compreensão a respeito de questões fundamentais sobre as características da história de vida dos anfíbios, transmissão de doenças, estrutura de comunidades, biogeografia e previsões populacionais em diferentes cenários de mudanças globais, como a expansão da agricultura, uso de agrotóxicos, perda de habitat e mudanças climáticas.

15.
Toxins (Basel) ; 13(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34822600

RESUMO

The genus Brachycephalus is a fascinating group of miniaturized anurans from the Brazilian Atlantic Forest, comprising the conspicuous, brightly colored pumpkin-toadlets and the cryptic flea-toads. Pumpkin-toadlets are known to contain tetrodotoxins and therefore, their bright colors may perform an aposematic function. Previous studies based on a limited number of mitochondrial and nuclear-encoded markers supported the existence of two clades containing species of pumpkin-toadlet phenotype, but deep nodes remained largely unresolved or conflicting between data sets. We use new RNAseq data of 17 individuals from nine Brachycephalus species to infer their evolutionary relationships from a phylogenomic perspective. Analyses of almost 5300 nuclear-encoded ortholog protein-coding genes and full mitochondrial genomes confirmed the existence of two separate pumpkin-toadlet clades, suggesting the convergent evolution (or multiple reversals) of the bufoniform morphology, conspicuous coloration, and probably toxicity. In addition, the study of the mitochondrial gene order revealed that three species (B. hermogenesi, B. pitanga, and B. rotenbergae) display translocations of different tRNAs (NCY and CYA) from the WANCY tRNA cluster to a position between the genes ATP6 and COIII, showing a new mitochondrial gene order arrangement for vertebrates. The newly clarified phylogeny suggests that Brachycephalus has the potential to become a promising model taxon to understand the evolution of coloration, body plan and toxicity. Given that toxicity information is available for only few species of Brachycephalus, without data for any flea-toad species, we also emphasize the need for a wider screening of toxicity across species, together with more in-depth functional and ecological study of their phenotypes.


Assuntos
Anuros/fisiologia , Pigmentação da Pele/fisiologia , Transcriptoma , Animais , Anuros/genética , Brasil , Florestas , Genoma Mitocondrial , Fenótipo , Filogenia , Pigmentação da Pele/genética
16.
Mol Phylogenet Evol ; 165: 107311, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530117

RESUMO

The 71 currently known species of dwarf geckos of the genus Lygodactylus are a clade of biogeographic interest due to their occurrence in continental Africa, Madagascar, and South America. Furthermore, because many species are morphologically cryptic, our knowledge of species-level diversity within this genus is incomplete, as indicated by numerous unnamed genetic lineages revealed in previous molecular studies. Here we provide an extensive multigene phylogeny covering 56 of the named Lygodactylus species, four named subspecies, and 34 candidate species of which 19 are newly identified in this study. Phylogenetic analyses, based on ∼10.1 kbp concatenated sequences of eight nuclear-encoded and five mitochondrial gene fragments, confirm the monophyly of 14 Lygodactylus species groups, arranged in four major clades. We recover two clades splitting from basal nodes, one comprising exclusively Malagasy species groups, and the other containing three clades. In the latter, there is a clade with only Madagascar species, which is followed by a clade containing three African and one South American species groups, and its sister clade containing six African and two Malagasy species groups. Relationships among species groups within these latter clades remain weakly supported. We reconstruct a Lygodactylus timetree based on a novel fossil-dated phylotranscriptomic tree of squamates, in which we included data from two newly sequenced Lygodactylus transcriptomes. We estimate the crown diversification of Lygodactylus started at 46 mya, and the dispersal of Lygodactylus among the main landmasses in the Oligocene and Miocene, 35-22 mya, but emphasize the wide confidence intervals of these estimates. The phylogeny suggests an initial out-of-Madagascar dispersal as most parsimonious, but accounting for poorly resolved nodes, an out-of-Africa scenario may only require one extra dispersal step. More accurate inferences into the biogeographic history of these geckos will likely require broader sampling of related genera and phylogenomic approaches to provide better topological support. A survey of morphological characters revealed that most of the major clades and species groups within Lygodactylus cannot be unambiguously characterized by external morphology alone, neither by unique character states nor by a diagnostic combination of character states. Thus, any future taxonomic work will likely benefit from integrative, phylogenomic approaches.


Assuntos
Lagartos , Filogenia , África , Animais , Teorema de Bayes , Fósseis , Genes Mitocondriais , Lagartos/anatomia & histologia , Lagartos/genética , Madagáscar , América do Sul
17.
Cladistics ; 37(1): 73-105, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478175

RESUMO

The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.


Assuntos
Anuros/classificação , Anuros/genética , Filogenia , Animais , Núcleo Celular/genética , Genes Mitocondriais , RNA Ribossômico 16S , Análise de Sequência de DNA
18.
Cladistics ; 37(1): 36-72, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478174

RESUMO

The South American and West Indian Casque-headed Treefrogs (Hylidae: Hylinae: Lophyohylini) include 85 species. These are notably diverse in morphology (e.g. disparate levels of cranial hyperossification) and life history (e.g. different reproductive modes, chemical defences), have a wide distribution, and occupy habitats from the tropical rainforests to semiarid scrubland. In this paper, we present a phylogenetic analysis of this hylid tribe based on sequence fragments of up to five mitochondrial (12S, 16S, ND1, COI, Cytb) and six nuclear genes (POMC, RAG-1, RHOD, SIAH, TNS3, TYR). We included most of its species (> 96%), in addition to a number of new species. Our results indicate: (i) the paraphyly of Trachycephalus with respect to Aparasphenodon venezolanus; (ii) the nonmonophyly of Aparasphenodon, with Argenteohyla siemersi, Corythomantis galeata and Nyctimantis rugiceps nested within it, and Ap. venezolanus nested within Trachycephalus; (iii) the polyphyly of Corythomantis; (iv) the nonmonophyly of the recognized species groups of Phyllodytes; and (v) a pervasive low support for the deep relationships among the major clades of Lophyohylini, including C. greeningi and the monotypic genera Itapotihyla and Phytotriades. To remedy the nonmonophyly of Aparasphenodon, Corythomantis, and Trachycephalus, we redefined Nyctimantis to include Aparasphenodon (with the exception of Ap. venezolanus, which we transferred to Trachycephalus), Argenteohyla, and C. galeata. Additionally, our results indicate the need for taxonomic work in the following clades: (i) Trachycephalus dibernardoi and Tr. imitatrix; (ii) Tr. atlas, Tr. mambaiensis and Tr. nigromaculatus; and (iii) Phyllodytes. On the basis of our phylogenetic results, we analyzed the evolution of skull hyperossification and reproductive biology, with emphasis on the multiple independent origins of phytotelm breeding, in the context of Anura. We also analyzed the inter-related aspects of chemical defences, venom delivery, phragmotic behaviour, co-ossification, and prevention of evaporative water loss.


Assuntos
Anuros/classificação , Anuros/genética , Filogenia , Animais , Evolução Biológica , Núcleo Celular/genética , Genes Mitocondriais , RNA Ribossômico 16S , Análise de Sequência de DNA , Crânio/anatomia & histologia
19.
Mitochondrial DNA B Resour ; 6(8): 2393-2395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345705

RESUMO

The mitogenome of the South American parthenogenetic lizard Loxopholis percarinatum Müller, 1923 (Squamata: Gymnophthalmidae), a uni-bisexual species complex, was recovered for three individuals from Rio Negro region, Amazonas, Brazil. The content and order of genes are typical for vertebrate mitochondrial genomes, and we recovered 13 protein-coding genes, 22 tRNA, and two rRNA (12S and 16S), in addition to partial fragments of the Control Region. A maximum likelihood phylogenetic analysis with mitogenomes of selected lizard families recovered L. percarinatum with Iphisa elegans Gray, 1851, the only other Gymnophthalmidae species available in GenBank.

20.
Ecol Evol ; 11(14): 9293-9307, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306622

RESUMO

The host-associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon-based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co-occurrence networks; and (3) co-occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti-Bd bacteria were not broadly negatively co-associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...