Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(36): 13554-13562, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28872181

RESUMO

The usability and tunability of the essential InP-InGaAs material combination in nanowire-based quantum wells (QWs) are assessed. The wurtzite phase core-multi-shell InP-InGaAs-InP nanowire QWs are characterised using cross-section transmission electron microscopy and photoluminescence measurements. The InP-InGaAs direct interface is found to be sharp while the InGaAs-InP inverted interface is more diffused, in agreement with their planar counterpart. Bright emission is observed from the single nanowires containing the QWs at room temperature, with no emission from the InP core or outer barrier. The tunability of the QW emission wavelength in the 1.3-1.55 µm communication wavelength range is demonstrated by varying the QW thickness and in the 1.3 µm range by varying the composition. The experiments are supported by simulation of the emission wavelength of the wurtzite phase InP-InGaAs QWs in the thickness range considered. The radial heterostructure is further extended to design multiple QWs with bright emission, therefore establishing the capability of this material system for nanowire based optical devices for communication applications.

2.
Opt Express ; 22(7): 8156-64, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718193

RESUMO

The dependence of laser performance on the active region position in broad-waveguide laser diodes is presented in this paper. Performance of structures with different position of active region is compared in simulation and actual devices. Lasers with active region displaced towards the p-cladding layer outperformed the lasers with active region undisplaced or displaced towards the n-cladding layer both in simulation and experimentally. Maximum output power increased by 25% for devices with active region displaced towards the p-cladding layer.

3.
Opt Express ; 21(7): 8276-85, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571918

RESUMO

In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.


Assuntos
Amplificadores Eletrônicos , Lasers Semicondutores , Absorção , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...