Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(1): e53054, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779571

RESUMO

Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.


Assuntos
Sistemas CRISPR-Cas , DNA Mitocondrial , DNA Mitocondrial/genética , Regulação para Baixo , Edição de Genes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transcrição Gênica
2.
EMBO Mol Med ; 12(7): e11659, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525278

RESUMO

Pathogenic variants in FBXL4 cause a severe encephalopathic syndrome associated with mtDNA depletion and deficient oxidative phosphorylation. To gain further insight into the enigmatic pathophysiology caused by FBXL4 deficiency, we generated homozygous Fbxl4 knockout mice and found that they display a predominant perinatal lethality. Surprisingly, the few surviving animals are apparently normal until the age of 8-12 months when they gradually develop signs of mitochondrial dysfunction and weight loss. One-year-old Fbxl4 knockouts show a global reduction in a variety of mitochondrial proteins and mtDNA depletion, whereas lysosomal proteins are upregulated. Fibroblasts from patients with FBXL4 deficiency and human FBXL4 knockout cells also have reduced steady-state levels of mitochondrial proteins that can be attributed to increased mitochondrial turnover. Inhibition of lysosomal function in these cells reverses the mitochondrial phenotype, whereas proteasomal inhibition has no effect. Taken together, the results we present here show that FBXL4 prevents mitochondrial removal via autophagy and that loss of FBXL4 leads to decreased mitochondrial content and mitochondrial disease.


Assuntos
Autofagia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Ubiquitina-Proteína Ligases/deficiência , Animais , Autofagia/genética , DNA Mitocondrial/genética , Proteínas F-Box/genética , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fenótipo , Ubiquitina-Proteína Ligases/genética
3.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036713

RESUMO

Regulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that Tefm is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional Tefm-knockout hearts. In contrast, the promoter-proximal transcripts are much increased in Tefm knockout mice, but they mostly terminate before the region where the switch from transcription to replication occurs, and consequently, de novo mtDNA replication is profoundly reduced. Unexpectedly, deep sequencing of RNA from Tefm knockouts revealed accumulation of unprocessed transcripts in addition to defective transcription elongation. Furthermore, a proximity-labeling (BioID) assay showed that TEFM interacts with multiple RNA processing factors. Our data demonstrate that TEFM acts as a general transcription elongation factor, necessary for both gene transcription and replication primer formation, and loss of TEFM affects RNA processing in mammalian mitochondria.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Animais , DNA Mitocondrial , Desenvolvimento Embrionário/genética , Deleção de Genes , Regulação da Expressão Gênica , Loci Gênicos , Heterozigoto , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Fenótipo , Regiões Promotoras Genéticas
4.
Biochim Biophys Acta Bioenerg ; 1858(8): 641-654, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28342810

RESUMO

Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Assuntos
Proteínas de Transporte/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Neoplasias/metabolismo , Transporte Biológico , Proteínas de Transporte/biossíntese , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Modelos Biológicos , Família Multigênica , Neoplasias/genética , Neoplasias/patologia , Projetos de Pesquisa , Células Tumorais Cultivadas
5.
J Cell Biol ; 216(1): 83-92, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28011846

RESUMO

Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity.


Assuntos
Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Genótipo , Hidrólise , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação , Fenótipo , Precursores de Proteínas/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
6.
Biochim Biophys Acta ; 1853(8): 1850-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25958336

RESUMO

The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (AAC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Organismos Geneticamente Modificados , Ligação Proteica/genética , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/genética , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Estrutura Secundária de Proteína/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
7.
EMBO J ; 33(15): 1624-38, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942160

RESUMO

Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F1-ATPase core domain have been identified, insight into how the nuclear-encoded F1-domain assembles with the membrane-embedded Fo-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1-module to the membrane embedded Fo-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase.


Assuntos
Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
EMBO J ; 32(6): 886-98, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23403928

RESUMO

The mitochondrial presequence translocase interacts with presequence-containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix-targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim-proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal-sensitive manner in a process that involves the IMS-domain of the Tim23 channel. The signal-driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor-associated form of the TIM23 complex required for matrix transport.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Sinais Direcionadores de Proteínas/genética , Estrutura Secundária de Proteína , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Especificidade por Substrato
9.
Nutr Metab (Lond) ; 9(1): 86, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22995226

RESUMO

BACKGROUND: DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats. METHODS: To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals. RESULTS: ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions.DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals. CONCLUSIONS: DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity.

10.
BMC Mol Biol ; 13: 9, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22436005

RESUMO

BACKGROUND: Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs) were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. RESULTS: We identified 43 genes that shifted towards the polysomal fraction (up-regulated) and 2 genes that shifted towards free mRNA fraction (down-regulated). Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3), form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa), act on the regulation of translation (eIF4B) or transcription (HSF1, IRF6, MYC, TSC22d3). Others act as chaperones (BAG3, HSPA8, HSP90ab1) or in other metabolic or signals transducing processes. CONCLUSIONS: We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.


Assuntos
Adipogenia/fisiologia , Regulação da Expressão Gênica , Polirribossomos/metabolismo , Biossíntese de Proteínas , Células 3T3-L1 , Animais , Análise por Conglomerados , Regulação para Baixo , Perfilação da Expressão Gênica , Homeostase , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Polirribossomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
11.
Mol Biol Cell ; 23(2): 247-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22114354

RESUMO

The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas de Membrana/genética , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
12.
J Cell Biol ; 195(4): 643-56, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22065641

RESUMO

N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
Infect Immun ; 76(7): 2905-12, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18411295

RESUMO

The intracellular protozoan Toxoplasma gondii induces persistent infections in various hosts and is an important opportunistic pathogen of humans with immature or deficient immune responses. The ability to survive intracellularly largely depends on the blocking of different proapoptotic signaling cascades of its host cell. Fas/CD95 triggers an apoptotic cascade that is crucial for immunity and the outcome of infectious diseases. We have determined the mechanism by which T. gondii counteracts death receptor-mediated cell death in type II cells that transduce Fas/CD95 ligation via caspase 8-mediated activation of the mitochondrial amplification loop. The results showed that infection with T. gondii significantly reduced Fas/CD95-triggered apoptosis in HeLa cells by inhibiting the activities of initiator caspases 8 and 9 and effector caspase 3/7. Parasitic infection dose dependently diminished cleavage of caspase 8, the BH3-only protein Bid, and the downstream caspases 9 and 3. Importantly, interference with Fas/CD95-triggered caspase 8 and caspase 3/7 activities after parasitic infection was largely dependent on the presence of caspase 9. Within the mitochondrial amplification loop, T. gondii significantly inhibited the Fas/CD95-triggered release of cytochrome c into the host cell cytosol. These results indicate that T. gondii inhibits Fas/CD95-mediated apoptosis in type II cells primarily by decreasing the apoptogenic function of mitochondria.


Assuntos
Apoptose/fisiologia , Inibidores de Caspase , Mitocôndrias/enzimologia , Toxoplasma/patogenicidade , Receptor fas/metabolismo , Animais , Caspase 9/metabolismo , Caspases Efetoras/metabolismo , Caspases Iniciadoras/metabolismo , Citocromos c/metabolismo , Células HeLa , Humanos , Células Jurkat , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...