Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402998, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716678

RESUMO

Aqueous zinc-based batteries (AZBs) are promising energy storage solutions with remarkable safety, abundant Zn reserve, cost-effectiveness, and relatively high energy density. However, AZBs still face challenges such as anode dendrite formation that reduces cycling stability and limited cathode capacity. Recently, low-dimensional metal-organic frameworks (LD MOFs) and their derivatives have emerged as promising candidates for improving the electrochemical performance of AZBs owing to their unique morphologies, high structure tunability, high surface areas, and high porosity. However, clear guidelines for developing LD MOF-based materials for high-performance AZBs are scarce. In this review, the recent progress of LD MOF-based materials for AZBs is critically examined. The typical synthesis methods and structural design strategies for improving the electrochemical performance of LD MOF-based materials for AZBs are first introduced. The recent noteworthy research achievements are systematically discussed and categorized based on their applications in different AZB components, including cathodes, anodes, separators, and electrolytes. Finally, the limitations are addressed and the future perspectives are outlined for LD MOFs and their derivatives in AZB applications. This review provides clear guidance for designing high-performance LD MOF-based materials for advanced AZBs.

2.
Small Methods ; : e2301633, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682581

RESUMO

Metal halide perovskites emerge as promising semiconductors for optoelectronic devices due to ease of fabrication, attractive photophysical properties, their low cost, highly tunable material properties, and high performance. High-quality thin films of metal halide perovskites are the basis of most of these applications including solar cells, light-emitting diodes, photodetectors, and electronic memristors. A typical fabrication method for perovskite thin films is the solution method, which has several limitations in device reproducibility, adverse environmental impact, and utilization of raw materials. Thermal evaporation holds great promise in addressing these bottlenecks in fabricating high-quality halide perovskite thin films. It also has high compatibility with mass-production platforms that are well-established in industries. This review first introduces the basics of the thermal evaporation method with a particular focus on the critical parameters influencing the thin film deposition. The research progress of the fabrication of metal halide perovskite thin films is further summarized by different thermal evaporation approaches and their applications in solar cells and other optoelectronic devices. Finally, research challenges and future opportunities for both fundamental research and commercialization are discussed.

3.
Langmuir ; 40(17): 9028-9038, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635954

RESUMO

Aqueous zinc-ion batteries (AZIBs) suffer from sharp cycling deterioration due to serious interfacial side reactions and corrosion problems on the zinc anode. Herein, an efficacious approach to construct hydrophobic ZnMoO4 coatings on Zn (denoted as Zn@ZMO) is proposed to mitigate direct contact between the zinc anode and electrolyte and enhance its cycle life. The hydrophobic ZnMoO4 layer (contact angle = 128°) with a honeycomb-like structure is prepared by an in situ liquid phase deposition method. The as-prepared ZnMoO4 coating exhibits persistent corrosion protection for Zn through 30 days of immersion in a 2 M ZnSO4 electrolyte, indicating excellent stability of the ZnMoO4 layer and ensuring its available application in AZIBs. Unique microchannels in this kind of honeycomb-like structured coating favor Zn2+ ion diffusion and ease of ion transport, especially at high current cycling. Its robust surface exclusion can effectively counter other side reactions induced by water, simultaneously. As a result, the Zn@ZMO symmetrical cell shows a remarkable cycle lifespan exceeding 2700 h at 1 mA cm-2/1 mA h cm-2, surpassing that of the bare zinc cell by more than 100 folds. At a current density of 5 A g-1, the Zn@ZMO//V2O5 cell can still achieve a specific capacity of 167.0 mA h g-1 after 500 cycles with a capacity retention rate of 88%, which demonstrates its long-term cycling stability.

4.
Angew Chem Int Ed Engl ; 63(21): e202402004, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38531783

RESUMO

Water molecules, which act as both solvent and reactant, play critical roles in photocatalytic reactions for methanol conversion. However, the influence of water on the adsorption of methanol and desorption of liquid products, which are two essential steps that control the performance in photocatalysis, has been well under-explored. Herein, we reveal the role of water in heterogeneous photocatalytic processes of methanol conversion on the platinized carbon nitride (Pt/C3N4) model photocatalyst. In situ spectroscopy techniques, isotope effects, and computational calculations demonstrate that water shows adverse effects on the adsorption of methanol molecules and desorption processes of methanol oxidation products on the surface of Pt/C3N4, significantly altering the reaction pathways in photocatalytic methanol conversion process. Guided by these discoveries, a photothermal-assisted photocatalytic system is designed to achieve a high solar-to-hydrogen (STH) conversion efficiency of 2.3 %, which is among the highest values reported. This work highlights the important roles of solvents in controlling the adsorption/desorption behaviours of liquid-phase heterogeneous catalysis.

5.
Adv Mater ; : e2313088, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308465

RESUMO

The anion-specific effects of the salting-in and salting-out phenomena are extensively observed in hydrogels, whereas the cation specificity of hydrogels is rarely reported. Herein, a multi-step strategy including borax pre-gelation, saline soaking, freeze-drying, and rehydrating is developed to fabricate polyvinyl alcohol gels with cation specificity, exhibiting the specific ordering of effects on the mechanical properties of gels as Ca2+ > Li+ > Mg2+ >> Fe3+ > Cu2+ >> Co2+ ≈ Ni2+ ≈ Zn2+ . The multiple effects of the fabrication strategy, including the electrostatic repulsion among cations, skeleton support function of graphene oxide nanosheets, and water absorption and retention of ions, endow the gels with the dual characteristics of hydrogels and aerogels (i.e., hydro-aerogels). The hydro-aerogels prepared with the cationic salting-out effect display attractive pressure sensing performance with excellent stability over 90 days and enable continuous monitoring of ambient humidity in real-time and effective work in seawater to detect various parameters (e.g., depth, salinity, and temperature). The hydro-aerogels prepared without borax pretreatment or using the cationic salting-in effect can serve as quasi-solid-state electrolytes in supercapacitors, with 99.59% capacitance retention after 10 000 cycles. This study realizes cation specificity in hydrogels and designs multifunctional hydro-aerogels for promising applications in various fields.

6.
Small ; 20(4): e2305192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718499

RESUMO

Lead halide perovskite solar cells have been emerging as very promising candidates for applications in indoor photovoltaics. To maximize their indoor performance, it is of critical importance to suppress intrinsic defects of the perovskite active layer. Herein, a facile solvent-engineering strategy is developed for effective suppression of both surface and bulk defects in lead halide perovskite indoor solar cells, leading to a high efficiency of 35.99% under the indoor illumination of 1000 lux Cool-white light-emitting diodes. Replacing dimethylformamide (DMF) with N-methyl-2-pyrrolidone (NMP) in the perovskite precursor solvent significantly passivates the intrinsic defects within the thus-prepared perovskite films, prolongs the charge carrier lifetimes and reduces non-radiative charge recombination of the devices. Compared to the DMF, the much higher interaction energy between NMP and formamidinium iodide/lead halide contributes to the markedly improved quality of the perovskite thin films with reduced interfacial halide deficiency and non-radiative charge recombination, which in turn enhances the device performance. This work paves the way for developing efficient indoor perovskite solar cells for the increasing demand for power supplies of Internet-of-Things devices.

7.
Angew Chem Int Ed Engl ; 63(4): e202317446, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38030582

RESUMO

The facile oxidation of Sn2+ to Sn4+ poses an inherent challenge that limits the efficiency and stability of tin-lead mixed (Sn-Pb) perovskite solar cells (PSCs) and all-perovskite tandem devices. In this work, we discover the sustainable redox reactions enabling self-healing Sn-Pb perovskites, where their intractable oxidation degradation can be recovered to their original state under light soaking. Quantitative and operando spectroscopies are used to investigate the redox chemistry, revealing that metallic Pb0 from the photolysis of perovskite reacts with Sn4+ to regenerate Pb2+ and Sn2+ spontaneously. Given the sluggish redox reaction kinetics, V3+ /V2+ ionic pair is designed as an effective redox shuttle to accelerate the recovery of Sn-Pb perovskites from oxidation. The target Sn-Pb PSCs enabled by V3+ /V2+ ionic pair deliver an improved power conversion efficiency (PCE) of 21.22 % and excellent device lifespan, retaining nearly 90 % of its initial PCE after maximum power point tracking under light for 1,000 hours.

8.
Angew Chem Int Ed Engl ; 62(39): e202307208, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37407437

RESUMO

The irreversibility of anion intercalation-deintercalation is a fundamental issue in determining the cycling stability of a dual-ion battery (DIB). In this work, we demonstrate that using a partially fluorinated carbonate solvent can drive a beneficial fluorinated secondary interphase layer formation. Such layer facilitates reversible anion (de-)intercalation processes by impeding solvent molecule co-intercalation and the associated graphite exfoliation. The enhanced reversibility of anion transport contributes to the overall cycling stability for a Zn-graphite DIB-a high Coulombic efficiency of 98.5 % after 800 cycles, with an attractive discharge capacity of 156 mAh g-1 and a mid-point discharge voltage of ≈1.7 V (at 0.1 A g-1 ). In addition, the formed fluorinated secondary interphase suppresses the self-discharge behavior, preserving 29 times of the capacity retention rate compared to the battery with a commonly used carbonate solvent, after standing for 24 hours. This work provides a simple and effective strategy for addressing the critical challenges in graphite-based DIBs and contributes to fundamental understanding to help accelerate their practical application.

9.
RSC Adv ; 13(27): 18974-18982, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37362599

RESUMO

Dual functional heterojunctions of tungsten oxide and bismuth vanadate (WO3/BiVO4) photoanodes are developed and their applications in photoelectrochemical (PEC) water splitting and mineralization of glycerol are demonstrated. The thin-film WO3/BiVO4 photoelectrode was fabricated by a facile hydrothermal method. The morphology, chemical composition, crystalline structure, chemical state, and optical absorption properties of the WO3/BiVO4 photoelectrodes were characterized systematically. The WO3/BiVO4 photoelectrode exhibits a good distribution of elements and a well-crystalline monoclinic WO3 and monoclinic scheelite BiVO4. The light-absorption spectrum of the WO3/BiVO4 photoelectrodes reveals a broad absorption band in the visible light region with a maximum absorption of around 520 nm. The dual functional WO3/BiVO4 photoelectrodes achieved a high photocurrent density of 6.85 mA cm-2, which is 2.8 times higher than that of the pristine WO3 photoelectrode in the presence of a mixture of 0.5 M Na2SO4 and 0.5 M glycerol electrolyte under AM 1.5 G (100 mW cm-2) illumination. The superior PEC performance of the WO3/BiVO4 photoelectrode was attributed to the synergistic effects of the superior crystal structure, light absorption, and efficient charge separation. Simultaneously, glycerol plays an essential role in increasing the efficiency of hydrogen production by suppressing charge recombination in the water redox reaction. Moreover, the WO3/BiVO4 photoelectrode shows the total organic carbon (TOC) removal efficiency of glycerol at about 82% at 120 min. Notably, the WO3/BiVO4 photoelectrode can be a promising photoelectrode for simultaneous hydrogen production and mineralization of glycerol with a simple, economical, and environmentally friendly approach.

10.
Angew Chem Int Ed Engl ; 61(32): e202204407, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650689

RESUMO

Construction of an intimate film/substrate interface is of great importance for a photoelectrode to achieve efficient photoelectrochemical performance. Inspired by coordination chemistry, a polymeric carbon nitride (PCN) film is intimately grown on a Ti-coated substrate by an in situ thermal condensation process. The as-prepared PCN photoanode exhibits a record low onset potential (Eonset ) of -0.38 V versus the reversible hydrogen electrode (RHE) and a decent photocurrent density of 242 µA cm-2 at 1.23 VRHE for water splitting. Detailed characterization confirms that the origin of the ultralow onset potential is mainly attributed to the substantially reduced interfacial resistance between the Ti-coated substrate and the PCN film benefitting from the constructed interfacial sp2 N→Ti coordination bonds. For the first time, the ultralow onset potential enables the PCN photoanode to drive water splitting without external bias with a stable photocurrent density of ≈9 µA cm-2 up to 1 hour.

11.
Nanoscale ; 14(6): 2221-2229, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088796

RESUMO

The practical applications of metal-organic frameworks (MOFs) usually require their assembly into mechanically robust structures, usually achieved via coating onto various types of substrates. This paper describes a simple, scalable, and versatile mechanochemical technique for producing MOF nanocrystal coatings on various non-prefunctionalised substrates, including ZrO2, carbon cloth, porous polymer, nickel foam, titanium foil and fluorine-doped tin oxide glass. We revealed the detailed mechanisms that ensure the coating's stability, and identified the coating can facilitate the interfacial energy transfer, which allowed the electrocatalysis application of the MOF coating on conductive substrates. We further demonstrated that coatings can be directly generated in a one-pot fashion by ball milling MOF precursors with substrates.

12.
J Hazard Mater ; 402: 123533, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758999

RESUMO

Bifunctional photoelectrochemical (PEC) process for simultaneous hydrogen production and mineralisation of humic acid in water using TiO2-1 wt% Au@TiO2/Al2O3/Cu2O multi-layered p-type photoelectrodes is demonstrated. The newly designed bifunctional PEC system leads to a high degradation efficiency of dissolved humic compounds, the target pollutant, by up to 87% during 2 h reaction time. Simultaneously, humic acid is also served as a sacrificial electron donor in the proposed system, contributing to a high photocurrent density of the multi-layered p-type Cu2O photoelectrodes up to -6.32 mA cm-2 at 0 V vs. Reversible Hydrogen Electrode (RHE) under the AM 1.5 simulated 1-Sun solar illumination. The Z-scheme feature of this bifunctional PEC devices exhibiting a short-circuit photocurrent density of -0.45 mA cm-2 and solar-to-hydrogen conversion (STH) of 0.5 % in the presence of humic acid sheds light on the new bias-free artificial photosynthesis PEC system.

13.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605173

RESUMO

To start a step such as some realization of minimized and integrated devices, it requires simply understanding the surface status of hybrid perovskite on the e-beam irradiation because many commercial semiconductor devices are performed with a surface patterning process using e-beam or etching gas. The surface status of CH3NH3PbBr3 (MAPbBr3) single crystal was studied after a grazing e-beam irradiation in an ultra-high vacuum. The prepared hybrid perovskite single crystal was irradiated by the 3 degree-grazing e-beam with energy of 15 kV for 10 min using a reflection high-electron energy diffraction technique. The e-beam irradiation on the MAPbBr3 hybrid perovskite single crystal induced the deformation from MAPbBr3 into MABr, Br2, and Pb on the surface. The gas phases of MABr and Br2 are depleted from the surface and the Pb element has remained on the surface. As a result of the e-beam irradiation, it formed a polycrystalline-like phase and Pb metal particles on the surface, respectively.

14.
Angew Chem Int Ed Engl ; 59(18): 7230-7234, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32067299

RESUMO

Atomic co-catalysts offer high potential to improve the photocatalytic performance, of which the preparation with earth-abundant elements is challenging. Here, a new molten salt method (MSM) is designed to prepare atomic Ni co-catalyst on widely studied TiO2 nanoparticles. The liquid environment and space confinement effect of the molten salt leads to atomic dispersion of Ni ions on TiO2 , while the strong polarizing force provided by the molten salt promotes formation of strong Ni-O bonds. Interestingly, Ni atoms are found to facilitate the formation of oxygen vacancies (OV) on TiO2 during the MSM process, which benefits the charge transfer and hydrogen evolution reaction. The synergy of atomic Ni co-catalyst and OV results in 4-time increase in H2 evolution rate compared to that of the Ni co-catalyst on TiO2 prepared by an impregnation method. This work provides a new strategy of controlling atomic co-catalyst together with defects for efficient photocatalytic water splitting.

15.
Adv Mater ; 31(38): e1801369, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30125390

RESUMO

Photocatalysis for solar-driven reactions promises a bright future in addressing energy and environmental challenges. The performance of photocatalysis is highly dependent on the design of photocatalysts, which can be rationally tailored to achieve efficient light harvesting, promoted charge separation and transport, and accelerated surface reactions. Due to its unique feature, semiconductors with hollow structure offer many advantages in photocatalyst design including improved light scattering and harvesting, reduced distance for charge migration and directed charge separation, and abundant surface reactive sites of the shells. Herein, the relationship between hollow nanostructures and their photocatalytic performance are discussed. The advantages of hollow nanostructures are summarized as: 1) enhancement in the light harvesting through light scattering and slow photon effects; 2) suppression of charge recombination by reducing charge transfer distance and directing separation of charge carriers; and 3) acceleration of the surface reactions by increasing accessible surface areas for separating the redox reactions spatially. Toward the end of the review, some insights into the key challenges and perspectives of hollow structured photocatalysts are also discussed, with a good hope to shed light on further promoting the rapid progress of this dynamic research field.

16.
Chemistry ; 24(69): 18544-18550, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30265420

RESUMO

To fulfil the potential of Li-S batteries (LSBs) with high energy density and low cost, multiple challenges need to be addressed simultaneously. Most research in LSBs has been focused on the sulfur cathode design, although the performance is also known to be sensitive to other parameters such as binder, current collector, separator, lithium anode, and electrolyte. Here, an integrated LSB system based on the understanding of the different roles of binder, current collector, and separator is developed. By using the cross-linked carboxymethyl cellulose-citric acid (CMC-CA) binder, Toray carbon paper current collector, and reduced graphene oxide (rGO) coated separator, LSBs achieve a high capacity of 960 mAh g-1 after 200 cycles (2.5 mg cm-2 ) and 930 mAh g-1 after 50 cycles (5 mg cm-2 ) at 0.1 C. Moreover, the failure mechanism at a high sulfur loading with characteristics of fast capacity decay and infinite charging is discussed. This work highlights the synergistic effect of different components and the challenges towards more reliable LSBs with high sulfur loading.

17.
Phys Chem Chem Phys ; 20(35): 22629-22635, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131993

RESUMO

Insightful understanding of the energy loss mechanism during photoelectrochemical (PEC) processes is of vital importance for efficient solar fuel production. Potential-current features under light illumination are typically used to evaluate the effectiveness of the PEC processes. However, energy loss that leads to various shapes of measured photocurrent-potential (j-E) curves is still not well understood. Herein, based on hematite photoanodes, we systematically studied the photocurrent-potential-light intensity (j-E-I) relationships to acquire quantitative understanding of the loss mechanism during the PEC process by decoupling it into a photovoltaic (PV) and an electrocatalytic (EC) process. Both numerical simulation and experimental results have confirmed the reasonability of this analysis method. It provides comprehensive understanding of the energy loss at the semiconductor-electrolyte junction and the surface electrocatalysis process for further optimizing the PEC solar energy conversion process.

18.
Dalton Trans ; 46(32): 10714-10720, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28590476

RESUMO

A new type of boron-doped graphitic carbon nitride (B-g-C3N4) nanosheets was prepared by a benign one-pot thermal polycondensation process. Systematic studies revealed that a B-doping amount of 1 at% into g-C3N4 (1at%B-g-C3N4) showed the best photocatalytic H2 evolution activity of 1880 µmol h-1 g-1 under visible light irradiation (>400 nm), which is more than 12 times that of the pristine g-C3N4 bulk. Detailed characterizations revealed that the high photocatalytic performance could be attributed to the combination of band structure engineering and morphological control. B-doping not only reduces the band gap to absorb more visible light but also exhibits a higher surface area of B-g-C3N4 (49.47 m2 g-1) as compared to that of g-C3N4 bulk (8.24 m2 g-1), which subsequently improve the photocatalytic performance drastically. This work demonstrates a synergistic strategy to prepare efficient metal-free B-g-C3N4 nanosheets as a promising photocatalyst for H2 evolution under visible light with good stability.

19.
ACS Appl Mater Interfaces ; 9(18): 15510-15524, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28430411

RESUMO

A new method based on one-step solvothermal reaction is demonstrated to synthesize ultrathin Ni-Co layered double hydroxide (LDH) nanosheets, which grow directly on a flexible carbon fiber cloth (NiCo-LDH/CFC). Through using 2-methylimidazole as complex and methanol as solvent, the as-prepared NiCo-LDH/CFC shows a (003) facet preferential growth and an expanded interlayer spacing structure, resulting in a unique 3D porous nanostructure with a thickness of nanosheets of around 5-7 nm that shows high energy storage performance. By controlling the ratio of Ni/Co = 4:1 in the precursor solution, the electrode shows a specific capacitance of 2762.7 F g-1 (1243.2 C g-1) at a current density of 1 A g-1. Nevertheless, the optimal composition is obtained with Ni/Co = 1:1, which produces a specific capacitance of 2242.9 F g-1 (1009.3 C g-1) at 1 A g-1 and shows an excellent rate capability with 61% of the original capacitance being retained at a current density of 60 A g-1. The hybrid supercapacitor (HSC) based on the NiCo-LDH/CFC exhibits a maximum energy density of 59.2 Wh kg-1 and power densities of 34 kW kg-1, respectively. Long-term stability test shows that 82% of the original capacitance of the HSC remains after 5000 cycles. Importantly, the electrochemical performance of the solid-state flexible supercapacitors based on the prepared NiCo-LDH/CFC electrode showed a negligible change when the device was bent up to 180°. The performance of synthesized NiCo-LDH/CFC indicates the great potential of the material for delivering both high energy density and high power density in energy storage devices.

20.
Adv Mater ; 29(48)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28370537

RESUMO

Rechargeable aluminum-ion batteries (AIBs) are attractive new generation energy storage devices due to its low cost, high specific capacity, and good safety. However, the lack of suitable electrode materials with high capacity and enhanced rate performance makes it difficult for real applications. Herein, the preparation of 3D reduced graphene oxide-supported SnS2 nanosheets hybrid is reported as a new type of cathode material for AIBs. The resultant material demonstrates one of the highest capacities of 392 mAh g-1 at 100 mA g-1 and good cycling stability. It is revealed that the layered SnS2 nanosheets anchored on 3D reduced graphene oxide network endows the composite not only high electronic conductivity but also fast kinetic diffusion pathway. As a result, the hybrid material exhibits high rate performance (112 mAh g-1 at 1000 mA g-1 ). The detailed characterization also verifies the intercalation and deintercalation of relatively large chloroaluminate anions into the layered SnS2 during the charge-discharge process, which is important for better understanding of the electrochemical process of AIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...