Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 22(6): 476-491, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128371

RESUMO

Starch is the predominant compound in bulb scales, and previous studies have shown that bulblet development is closely associated with starch enrichment. However, how starch synthesis affects bulbification at the molecular level is unclear. In this study, we demonstrate that Lilium brownii var. giganteum, a wild lily with a giant bulb in nature, and L. brownii, the native species, have different starch levels and characteristics according to cytological and ultra-structural observations. We cloned the complete sequence of three key gene-encoding enzymes (LbgAGPS, LbgGBSS, andLbgSSIII) during starch synthesis by rapid amplification of 5' and 3' complementary DNA (cDNA) ends (RACE) technology. Bioinformatics analysis revealed that the proteins deduced by these genes contain the canonical conserved domains. Constructed phylogenetic trees confirmed the evolutionary relationships with proteins from other species, including monocotyledons and dicotyledons. The transcript levels of various tissues and time course samples obtained during bulblet development uncovered relatively high expression levels in bulblets and gradual increase expression accompanying bulblet growth. Moreover, a set of single nucleotide polymorphisms (SNPs) was discovered in the AGPS genes of four lily genotypes, and a purifying selection fashion was predicted according to the non-synonymous/synonymous (Ka/Ks) values. Taken together, our results suggested that key starch-synthesizing genes might play important roles in bulblet development and lead to distinctive phenotypes in bulblet size.


Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Lilium/metabolismo , Subunidades Proteicas/genética , Amido/biossíntese , Clonagem Molecular , Biologia Computacional , Lilium/genética , Lilium/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
2.
Zhongguo Zhong Yao Za Zhi ; 43(10): 1957-1968, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29933657

RESUMO

Calycanthaceae family comprises of four genera including Chimonanthus, Sinocalycanthus, Calycanthus, and Idiospermum. The plants of Calycanthaceae are popular ornamental shrubs and used as foods and medicines, which are mainly distributed in China, North America, and Australia. The plants of Calycanthaceae are rich in volatile components, alkaloids, sesquiterpenes and coumarins. Dimeric piperidinoquinoline and dimeric pyrrolidinoindoline alkaloids, dimeric and/or trimeric coumarins are characteristic compositions in these plants. In order to provide timely reference for further investigation and development of Calycanthaceae plants, we made a systemic review on chemical constituents, i.e. alkaloids, terpenoids, flavonoids, coumarins, and steroids, from Calycanthaceae plants, focusing on their chemical structures and pharmacological activities.


Assuntos
Alcaloides/farmacologia , Calycanthaceae/química , Cumarínicos/farmacologia , Compostos Fitoquímicos/farmacologia , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...