Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 227: 105916, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777095

RESUMO

The severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus, recently being officially renamed as Dabie bandavirus, and a causative agent for an emerging infectious disease associated with high fatality. Effective therapeutics and vaccines are lacking and disease pathogenesis is yet to be fully elucidated. In our effort to identify new SFTSV inhibitory molecules, 6-Thioguanine (6-TG) was found to potently inhibit SFTSV infection. 6-TG has been widely used as therapeutic agent since the approval of the Food and Drug Administration in the 1960s. In the current study, we showed that 6-TG was a potent inhibitor of SFTSV infection with 50% effective concentrations (EC50) of 3.465 µM in VeroE6 cells, and 1.848 µM in HUVEC cells. The selectivity index (SI) was >57 in VeroE6 cells and >108 in HUVEC cells, respectively. The SFTSV RNA transcription, protein synthesis, and progeny virions were reduced in a dose dependent manner by the presence of 6-TG in the in vitro infection assay. Further study on the mechanism of the anti-SFTSV activity showed that 6-TG downregulated the production of early growth response gene-1 (EGR1). Using gene silencing and overexpression, we further confirmed that EGR1 was a host restriction factor against SFTSV. Meanwhile, treatment of infected experimental animals with 6-TG inhibited SFTSV infection and alleviated multi-organ dysfunction. In conclusion, we have identified 6-TG as an effective inhibitor of SFTSV replication via the inhibition of EGR1 expression. Further studies are needed to evaluate of 6-TG as a potential therapeutic for treating SFTS.

2.
FASEB J ; 38(2): e23430, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243751

RESUMO

Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.


Assuntos
Infecções por Enterovirus , Ácido Fólico , Células em Tufo , Animais , Camundongos , Proliferação de Células , Enterovirus/metabolismo , Infecções por Enterovirus/metabolismo , Interleucina-17/metabolismo , Células em Tufo/metabolismo , Ácido Fólico/farmacologia
3.
Antiviral Res ; 221: 105787, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145756

RESUMO

Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.


Assuntos
Aminopterina/análogos & derivados , Herpes Zoster , Estomatite Vesicular , Animais , Camundongos , Herpesvirus Humano 3 , Estomatite Vesicular/tratamento farmacológico , Herpes Zoster/tratamento farmacológico , Vírus da Estomatite Vesicular Indiana , Vesiculovirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
4.
Virus Res ; 338: 199240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832655

RESUMO

PURPOSE: EV71 (Enterovirus 71) is a major causative agent of the outbreaks of HFMD (hand, foot, and mouth disease), which is associated with neurological damage caused by permeability disruption of BBB (blood-brain barrier). HMGB1 (high-mobility group box 1) is a widely expressed nuclear protein that triggers host inflammatory responses. Our work aimed to explore the function of HMGB1 in EV71 infection and its contributions to EV71-related BBB damage. METHODS: HeLa cells, HT-29 cells and AG6 mice were used to explore the translocation of HMGB1 in EV71 infection in vitro and in vivo. The roles of released HMGB1 on EV71 replication and associated inflammatory cytokines were investigated using recombinant HMGB1 in HeLa cells. The mechanisms of released HMGB1 in EV71-induced BBB injury were explored using recombinant HMGB1 and anti-HMGB1 neutralizing antibodies in monolayer HCMECs (immortalized human brain microvascular endothelial cells) and AG6 mice brain. RESULTS: EV71 induced HMGB1 nucleocytoplasmic translocation and extracellular release in vitro and in vivo. Released HMGB1 acted as an inflammatory mediator in EV71 infection rather than affecting viral replication in vitro. Released HMGB1 disrupted BBB integrity by enhancing VE-cadherin phosphorylation at tyrosine 685 in HCMECs, and reducing total VE-cadherin levels in HCMECs and AG6 mice in EV71 infection. And released HMGB1 induced an increase in activated astrocytes. Neutralization of HMGB1 reversed the increased endothelial hyperpermeability and phosphorylation of VE-cadherin in HCMECs. CONCLUSION: The inflammatory mediator HMGB1 released by EV71 exacerbated BBB disruption by enhancing VE-cadherin phosphorylation, which in turn aggravated EV71-induced neuroinflammation.


Assuntos
Barreira Hematoencefálica , Proteína HMGB1 , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Fosforilação , Células HeLa , Mediadores da Inflamação/metabolismo
5.
Virol Sin ; 38(3): 409-418, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028598

RESUMO

Folate receptor alpha (FOLR1) is vital for cells ingesting folate (FA). FA plays an indispensable role in cell proliferation and survival. However, it is not clear whether the axis of FOLR1/FA has a similar function in viral replication. In this study, we used vesicular stomatitis virus (VSV) to investigate the relationship between FOLR1-mediated FA deficiency and viral replication, as well as the underlying mechanisms. We discovered that FOLR1 upregulation led to the deficiency of FA in HeLa cells and mice. Meanwhile, VSV replication was notably suppressed by FOLR1 overexpression, and this antiviral activity was related to FA deficiency. Mechanistically, FA deficiency mainly upregulated apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) expression, which suppressed VSV replication in vitro and in vivo. In addition, methotrexate (MTX), an FA metabolism inhibitor, effectively inhibited VSV replication by enhancing the expression of APOBEC3B in vitro and in vivo. Overall, our present study provided a new perspective for the role of FA metabolism in viral infections and highlights the potential of MTX as a broad-spectrum antiviral agent against RNA viruses.


Assuntos
Receptor 1 de Folato , Vírus da Estomatite Vesicular Indiana , Humanos , Animais , Camundongos , Células HeLa , Receptor 1 de Folato/farmacologia , Vírus da Estomatite Vesicular Indiana/genética , Antivirais/farmacologia , Replicação Viral , Ácido Fólico/farmacologia , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/farmacologia , Desaminases APOBEC
6.
Metabolism ; 143: 155526, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822494

RESUMO

BACKGROUND: Folate (FA) is an essential cofactor in the one-carbon (1C) metabolic pathway and participates in amino acid metabolism, purine and thymidylate synthesis, and DNA methylation. FA metabolism has been reported to play an important role in viral replications; however, the roles of FA metabolism in the antiviral innate immune response are unclear. OBJECTIVE: To evaluate the potential regulatory role of FA metabolism in antiviral innate immune response, we establish the model of FA deficiency (FAD) in vitro and in vivo. The molecular and functional effects of FAD on 2'-5'-oligoadenylate synthetases (OAS)-associated antiviral innate immunity pathways were assessed; and the potential relationship between FA metabolism and the axis of adenosine deaminases acting on RNA 3 (ADAR3)/endogenous double-stranded RNA (dsRNA)/OAS was further explored in the present study, as well as the potential translatability of these findings in vivo. METHODS: FA-free RPMI 1640 medium and FA-free feed were used to establish the model of FAD in vitro and in vivo. And FA and homocysteine (Hcy) concentrations in cell culture supernatants and serum were used for FAD model evaluation. Ribonucleoprotein immunoprecipitation assay was used to enrich endogenous dsRNA, and dot-blot was further used for quantitative analysis of endogenous dsRNA. Western-blot assay, RNA isolation and quantitative real-time PCR, immunofluorescence assay, and other molecular biology techniques were used for exploring the potential mechanisms. RESULTS: In this study, we observed that FA metabolism negatively regulated OAS-mediated antiviral innate immune response. Mechanistically, FAD induced ADAR3, which interacted with endogenous dsRNA, to inhibit deaminated adenosine (A) being converted into inosine (I), leading to the cytoplasmic accumulation of dsRNA. Furthermore, endogenous dsRNA accumulated in cytoplasm triggered the host immune activation, thus promoting the expression of OAS2 to suppress the replication of viruses. Additionally, injection of 8-Azaadenosine to experimental animals, an A-to-I editing inhibitor, efficiently enhanced OAS-mediated antiviral innate immune response to reduce the viral burden in vivo. CONCLUSIONS: Taken together, our present study provided a new perspective to illustrate a relationship between FA metabolism and the axis of ADAR3/endogenous dsRNA/OAS, and a new insight for the treatment of RNA viral infectious diseases by targeting the axis of ADAR3/endogenous dsRNA/OAS.


Assuntos
Antivirais , RNA de Cadeia Dupla , Animais , Adenosina , Antivirais/farmacologia , Imunidade Inata , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...