Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Pharmacol ; 942: 175531, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690056

RESUMO

Empagliflozin has cardioprotective effects in patients with heart failure (HF). However, the mechanism by which empagliflozin protects against HF remains controversial. Study aimed to evaluate the effect of empagliflozin on myocardial fibrosis and cardiac function in HF mice and its possible mechanism. C57BL/6 mice were induced with HF by ligation of the left anterior descending coronary artery. At 4 weeks postoperation, mice were randomly given normal saline or empagliflozin for 8 weeks. Echocardiography was used to assess cardiac function. Masson's staining, immunohistochemistry and Western blot analysis were used to detect the degree of myocardial fibrosis. Changes in mitochondria were detected by observing mitochondrial morphology, measuring mitochondrial dynamics-related proteins and analysing the levels of adenosine triphosphate (ATP), adenosine monophosphate (AMP) and adenosine diphosphate (ADP). The mitochondrial fission inhibitor, mdivi1, was used to detect the relationship between mitochondrial dysfunction and cardiac dysfunction in HF mice. HF led to myocardial fibrosis and cardiac dysfunction. However, treatment with empagliflozin reduced these effects. Empagliflozin inhibited mitochondrial fission and improved energy metabolic efficiency in HF mice by regulating the expression of mitochondrial dynamics-related proteins. Similarly, mdivi1 attenuated mitochondrial dysfunction and cardiac dysfunction by inhibiting mitochondrial fission in HF mice. Regulation of mitochondrial dynamics, especially inhibition of mitochondrial fission, may be a potential target for reducing cardiac damage in patients with HF. Empagliflozin improved myocardial fibrosis and cardiac dysfunction by modulating mitochondrial dynamics in HF mice. Thus, the cardiac protective effect of empagliflozin may be related to the normalization of mitochondria and the increase in ATP production.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Cardíaca , Camundongos , Animais , Dinâmica Mitocondrial , Camundongos Endogâmicos C57BL , Insuficiência Cardíaca/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Fibrose
2.
J. physiol. biochem ; 78(4): 855-867, nov. 2022.
Artigo em Inglês | IBECS | ID: ibc-216177

RESUMO

Diabetes is an independent risk factor for atrial fibrillation (AF). This study aimed to elucidate the pathophysiology of diabetes-related AF from the perspective of the gut microbial metabolite trimethylamine N-oxide (TMAO). In the present study, male rats received either a normal diet to serve as the control group or a high-fat diet/streptozotocin to induce type 2 diabetes mellitus. Then, diabetic rats were divided into two groups based on the presence or absence of 3,3-dimethyl-1-butanol (DMB, a specific TMAO inhibitor) in drinking water: the diabetic cardiomyopathy (DCM) group and the DCM + DMB group. Eight weeks later, compared with control rats, rats in the DCM group exhibited gut microbiota dysbiosis and systemic TMAO elevation. The inflammatory cytokines IL-1β, IL-6, and TNF-α were markedly increased in the atria of rats in the DCM group. Downregulated expression of connexin 40 and lateralized distribution of connexin 43 were also observed in the atria of DCM rats. AF inducibility was significantly higher in DCM rats than in control rats. Furthermore, DMB treatment effectively ameliorated atrial inflammation and connexin remodeling while markedly reducing plasma TMAO levels. DMB treatment also decreased the vulnerability of diabetic rats to AF. In conclusion, TMAO might promote atrial inflammation and connexin remodeling in the development of diabetes, which may play a key role in mediating diabetes-related AF. (AU)


Assuntos
Animais , Ratos , Fibrilação Atrial , Remodelamento Atrial , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Conexinas , Inflamação , Metilaminas/metabolismo
3.
J Physiol Biochem ; 78(4): 855-867, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35962903

RESUMO

Diabetes is an independent risk factor for atrial fibrillation (AF). This study aimed to elucidate the pathophysiology of diabetes-related AF from the perspective of the gut microbial metabolite trimethylamine N-oxide (TMAO). In the present study, male rats received either a normal diet to serve as the control group or a high-fat diet/streptozotocin to induce type 2 diabetes mellitus. Then, diabetic rats were divided into two groups based on the presence or absence of 3,3-dimethyl-1-butanol (DMB, a specific TMAO inhibitor) in drinking water: the diabetic cardiomyopathy (DCM) group and the DCM + DMB group. Eight weeks later, compared with control rats, rats in the DCM group exhibited gut microbiota dysbiosis and systemic TMAO elevation. The inflammatory cytokines IL-1ß, IL-6, and TNF-α were markedly increased in the atria of rats in the DCM group. Downregulated expression of connexin 40 and lateralized distribution of connexin 43 were also observed in the atria of DCM rats. AF inducibility was significantly higher in DCM rats than in control rats. Furthermore, DMB treatment effectively ameliorated atrial inflammation and connexin remodeling while markedly reducing plasma TMAO levels. DMB treatment also decreased the vulnerability of diabetic rats to AF. In conclusion, TMAO might promote atrial inflammation and connexin remodeling in the development of diabetes, which may play a key role in mediating diabetes-related AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Masculino , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Experimental/complicações , Metilaminas/metabolismo , Inflamação , Conexinas
4.
Lab Invest ; 102(4): 341-351, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34775493

RESUMO

This study aimed to investigate the effects of renal denervation (RDN) on diabetic cardiomyopathy (DCM) and explore the related mechanisms. Male Sprague-Dawley rats were fed high-fat chow and injected with low-dose streptozotocin to establish a DCM model. Six rats served as controls. The surviving rats were divided into three groups: control group, DCM group and DCM + RDN group. RDN surgery was performed in the fifth week. At the end of the experiment, all rats were subjected to 18F-FDG PET/CT and metabolic cage studies. Cardiac function and structure were evaluated by echocardiography and histology. Myocardial substrate metabolism and mitochondrial function were assessed by multiple methods. In the 13th week, the DCM rats exhibited cardiac hypertrophy and interstitial fibrosis accompanied by diastolic dysfunction. RDN ameliorated DCM-induced cardiac dysfunction (E/A ratio: RDN 1.07 ± 0.18 vs. DCM 0.93 ± 0.12, P < 0.05; E/E' ratio: RDN 10.74 ± 2.48 vs. DCM 13.25 ± 1.99, P < 0.05) and pathological remodeling (collagen volume fraction: RDN 5.05 ± 2.05% vs. DCM 10.62 ± 2.68%, P < 0.05). Abnormal myocardial metabolism in DCM rats was characterized by suppressed glucose metabolism and elevated lipid metabolism. RDN increased myocardial glucose uptake and oxidation while reducing the absorption and utilization of fatty acids. Meanwhile, DCM decreased mitochondrial ATP content, depolarized the membrane potential and inhibited the activity of respiratory chain complexes, but RDN attenuated this mitochondrial damage (ATP: RDN 30.98 ± 7.33 µmol/gprot vs. DCM 22.89 ± 5.90 µmol/gprot, P < 0.05; complexes I, III and IV activity: RDN vs. DCM, P < 0.05). Furthermore, both SGLT2 inhibitor and the combination treatment produced similar effects as RDN alone. Thus, RDN prevented DCM-induced cardiac dysfunction and pathological remodeling, which is related to the improvement of metabolic disorders and mitochondrial dysfunction.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Transportador 2 de Glucose-Sódio/metabolismo , Trifosfato de Adenosina , Animais , Denervação/métodos , Rim , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Sprague-Dawley
5.
Front Physiol ; 12: 712338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421655

RESUMO

AIMS: The present study aimed to investigate alterations in neuroinflammation after heart failure (HF) and explore the potential mechanisms. METHODS: Male wild-type (WT) and Toll-like receptor 4 (TLR4)-knockout (KO) mice were subjected to sham operation or ligation of the left anterior descending coronary artery to induce HF. 8 weeks later, cardiac functions were analyzed by echocardiography, and intestinal barrier functions were examined by measuring tight junction protein expression, intestinal permeability and plasma metabolite levels. Alterations in neuroinflammation in the brain were examined by measuring microglial activation, inflammatory cytokine levels and the proinflammatory signaling pathway. The intestinal barrier protector intestinal alkaline phosphatase (IAP) and intestinal homeostasis inhibitor L-phenylalanine (L-Phe) were used to examine the relationship between intestinal barrier dysfunction and neuroinflammation in mice with HF. RESULTS: Eight weeks later, WT mice with HF displayed obvious increases in intestinal permeability and plasma lipopolysaccharide (LPS) levels, which were accompanied by elevated expression of TLR4 in the brain and enhanced neuroinflammation. Treatment with the intestinal barrier protector IAP significantly attenuated neuroinflammation after HF while effectively increasing plasma LPS levels. TLR4-KO mice showed significant improvements in HF-induced neuroinflammation, which was not markedly affected by intestinal barrier inhibitors or protectors. CONCLUSION: HF could induce intestinal barrier dysfunction and increase gut-to-blood translocation of LPS, which could further promote neuroinflammation through the TLR4 pathway.

6.
Front Cardiovasc Med ; 8: 650140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981735

RESUMO

Aims: The development of neuroinflammation deteriorates the prognosis of myocardial infarction (MI). We aimed to investigate the effect of renal denervation (RDN) on post-MI neuroinflammation in rats and the related mechanisms. Methods and Results: Male adult Sprague-Dawley rats were subjected to sham or ligation of the left anterior descending coronary artery to induce MI. One week later, the MI rats received a sham or RDN procedure. Their cardiac functions were analyzed by echocardiography, and their intestinal structures, permeability, and inflammatory cytokines were tested. The intestinal microbiota were characterized by 16S rDNA sequencing. The degrees of neuroinflammation in the brains of rats were analyzed for microglia activation, inflammatory cytokines, and inflammation-related signal pathways. In comparison with the Control rats, the MI rats exhibited impaired cardiac functions, intestinal injury, increased intestinal barrier permeability, and microbial dysbiosis, accompanied by increased microglia activation and pro-inflammatory cytokine levels in the brain. A RDN procedure dramatically decreased the levels of renal and intestinal sympathetic nerve activity, improved cardiac functions, and mitigated the MI-related intestinal injury and neuroinflammation in the brain of MI rats. Interestingly, the RDN procedure mitigated the MI-increased intestinal barrier permeability and pro-inflammatory cytokines and plasma LPS as well as ameliorated the gut microbial dysbiosis in MI rats. The protective effect of RDN was not significantly affected by treatment with intestinal alkaline phosphatase but significantly reduced by L-phenylalanine treatment in MI rats. Conclusions: RDN attenuated the neuroinflammation in the brain of MI rats, associated with mitigating the MI-related intestinal injury.

7.
iScience ; 23(12): 101857, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33344916

RESUMO

Due to the lack of effective early diagnostic measures and treatment methods, bladder cancer has become a malignant tumor that seriously threatens people's lives and health. Here, we reported that LINC00162, a super-enhancer long noncoding RNA, was highly expressed in bladder cancer cells and tissues. And LINC00162 was negatively correlated with neighboring PTTG1IP expression. Knocking down LINC00162 expression can inhibit the proliferative activity of bladder cancer cells and the growth of transplanted tumors in vivo, while knocking down the expression of PTTG1IP could restore the proliferative activity of bladder cancer cells. In addition, both LINC00162 and PTTG1IP were found to be able to bind to THRAP3, a transcription-related protein. And THRAP3 can regulate PTTG1IP expression. Finally, we demonstrated a mechanism that LINC00162 could regulate PTTG1IP expression through binding THRAP3. This study provided a potential target molecule for clinical treatment of bladder cancer.

8.
Clin Transl Med ; 10(8): e263, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377649

RESUMO

BACKGROUND: Metastasis is the leading cause of death in patients with bladder cancer (BC). However, current available treatments exert little effects on metastatic BC. Moreover, traditional grading and staging have only a limited ability to identify metastatic BC. Accumulating evidence indicates that the aberrant expression of microRNA is intimately associated with tumor progression. So far, many miRNAs have been identified as molecular targets for cancer diagnosis and therapy. This study focused on the role of miR-516a-5p (miR-516a) in BC. METHODS: MiR-516a expression and its downstream signaling pathway were detected using molecular cell biology and biochemistry approaches and techniques. Fresh clinical BC tissue was used to study the clinicopathological characteristics of patients with different miR-516a expression. The biological functions of miR-516a in BC were tested both in vivo and in vitro. RESULTS: A more invasive BC phenotype was significantly and positively correlated with miR-516a overexpression in BC patients. MiR-516a inhibition significantly decreased BC cell invasion and migration in vitro and in vivo. Furthermore, miR-516a attenuated the expression of PH domain leucine-rich repeat-containing protein phosphatase 2 protein and inhibited SMAD-specific E3 ubiquitin protein ligase 1 transcription by activating the AKT/Forkhead box O3 signaling pathway, which stabilized MMP9 and slowed down its proteasomal degradation, ultimately promoting BC motility and invasiveness. CONCLUSIONS: Our findings reveal the crucial function of miR-516a in promoting BC metastasis, and elucidate the molecular mechanism involved, suggesting that miR-516a may be a promising novel diagnostic and therapeutic target for BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...