Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3097, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308381

RESUMO

Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.


Assuntos
Encéfalo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Recompensa , Acetilcolina/metabolismo , Animais , Apetite/fisiologia , Encéfalo/citologia , Condicionamento Clássico , Retroalimentação Fisiológica , Larva , Modelos Psicológicos , Corpos Pedunculados/citologia , Vias Neurais/fisiologia , Neuropeptídeos/metabolismo , Odorantes , Percepção Olfatória/fisiologia , Optogenética
2.
Nat Commun ; 8: 14633, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256578

RESUMO

CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5' end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this 'plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/genética , Ativação Transcricional/genética , Algoritmos , Citometria de Fluxo , Redes Reguladoras de Genes/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Ligantes , Transfecção
3.
Genetics ; 199(1): 25-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359929

RESUMO

Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies.


Assuntos
Drosophila melanogaster/genética , Marcação de Genes/métodos , Optogenética/métodos , Transgenes , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Larva/genética , Larva/fisiologia , Locomoção/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...