Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 105(1): e4198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897690

RESUMO

Belowground niche partitioning presents a key mechanism for maintaining species coexistence and diversity. Its importance is currently reinforced by climate change that alters soil hydrological conditions. However, experimental tests examining the magnitude of its change under climate change are scarce. We combined measurements of oxygen stable isotopes to infer plant water-uptake depths and extreme drought manipulation in grasslands. Belowground niche partitioning was evidenced by different water-uptake depths of co-occurring species under ambient and extreme drought conditions despite an increased overlap among species due to a shift to shallower soil layers under drought. A co-occurrence of contrasting strategies related to the change of species water-uptake depth distribution was likely to be key for species to maintain some extent of belowground niche partitioning and could contribute to stabilizing coexistence under drought. Our results suggest that belowground niche partitioning could mitigate negative effects on diversity imposed by extreme drought under future climate.


Assuntos
Secas , Plantas , Solo , Água , Mudança Climática , Pradaria
2.
Proc Biol Sci ; 290(2001): 20230344, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357858

RESUMO

Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.


Assuntos
Ecossistema , Plantas , Filogenia , Sementes , Fenótipo , Folhas de Planta
3.
Sci Rep ; 12(1): 17771, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273037

RESUMO

In recent years, the effects of plastic contamination on soil and plants have received growing attention. Plastic can affect soil water content and thus may interact with the effects of drought on soil and plants. However, the effects of plastic on soil are highly context-dependent, and interactions with drought have been hardly tested. We conducted two greenhouse experiments to test the combined effects of plastic fragments (of varying size and concentration), water availability and soil texture, on soil water content and performance of the plant Arabidopsis thaliana. Plastic fragments had stronger negative effects on soil water content in low water availability, and the shape of this response (linear vs. unimodal) was mediated by soil texture. Conversely, increasing concentration of plastic had positive effects on plant growth. We suggest that plastic fragments introduce fracture points within soil aggregates. This increases number and size of soil pores favoring water loss but also facilitating root growth. Our results suggest complex interactive effects of plastic and drought, that may lead to a decoupling of plant and soil response. These processes should be taken into account in ecological studies and agricultural practices.


Assuntos
Arabidopsis , Secas , Solo , Plásticos , Arabidopsis/fisiologia , Plantas , Água/fisiologia , Raízes de Plantas/fisiologia
4.
Ecology ; 103(12): e3826, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857330

RESUMO

Under climate change, extreme droughts will limit water availability for plants. However, the species-specific responses make it difficult to draw general conclusions. We hypothesized that changes in species' abundance in response to extreme drought can be best explained by a set of water economic traits under ambient conditions in combination with the ability to adjust these traits towards higher drought resistance. We conducted a 4-year field experiment in temperate grasslands using rainout shelters with 30% and 50% rainfall reduction. We quantified the response as the change in species abundance between ambient conditions and the rainfall reduction. Abundance response to extreme drought was best explained by a combination of traits in ambient conditions and their functional adjustment, most likely reflecting plasticity. Smaller leaved species decreased less in abundance under drought. With increasing drought intensity, we observed a shift from drought tolerance, i.e., an increase in leaf dry matter content, to avoidance, i.e., a less negative turgor loss point (TLP) in ambient conditions and a constancy in TLP under drought. We stress the importance of using a multidimensional approach of variation in multiple traits and the importance of considering a range of drought intensities to improve predictions of species' response to climate change.


Assuntos
Mudança Climática , Secas , Folhas de Planta/fisiologia , Água
5.
New Phytol ; 235(2): 773-785, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357713

RESUMO

Ongoing global warming, coupled with increased drought frequencies, together with other biotic drivers may have resulted in complex evolutionary adaptation. The resurrection approach, comparing ancestors raised from stored seeds with their contemporary descendants under common conditions, is a powerful method to test for recent evolution in plant populations. We used 21-26-yr-old seeds of four European plant species - Matthiola tricuspidata, Plantago crassifolia, Clinopodium vulgare and Leontodon hispidus - stored in seed banks together with re-collected seeds from their wild populations. To test for evolutionary changes, we conducted a glasshouse experiment that quantified heritable changes in plant responses to drought and simulated insect herbivory. In three out of the four studied species, we found evidence that descendants had evolved shorter life cycles through faster growth and flowering. Shifts in the osmotic potential and leaf dry matter content indicated that descendants also evolved increased drought tolerance. A comparison of quantitative genetic differentiation (QST ) vs neutral molecular differentiation (FST ) values, using double digest restriction-site associated DNA (ddRAD) genotyping data, suggested that directional selection, and therefore adaptive evolution, was underlying some of the observed phenotypic changes. In summary, our study revealed evolutionary changes in plant populations over the last decades that are consistent with adaptation of drought escape and tolerance as well as herbivory avoidance.


Assuntos
Mudança Climática , Secas , Adaptação Fisiológica/genética , Evolução Biológica , Herbivoria , Plantas
6.
Trends Ecol Evol ; 36(9): 822-836, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088543

RESUMO

Under global change, how biological diversity and ecosystem services are maintained in time is a fundamental question. Ecologists have long argued about multiple mechanisms by which local biodiversity might control the temporal stability of ecosystem properties. Accumulating theories and empirical evidence suggest that, together with different population and community parameters, these mechanisms largely operate through differences in functional traits among organisms. We review potential trait-stability mechanisms together with underlying tests and associated metrics. We identify various trait-based components, each accounting for different stability mechanisms, that contribute to buffering, or propagating, the effect of environmental fluctuations on ecosystem functioning. This comprehensive picture, obtained by combining different puzzle pieces of trait-stability effects, will guide future empirical and modeling investigations.


Assuntos
Biodiversidade , Ecossistema , Fenótipo
7.
Ecology ; 99(2): 360-371, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29083475

RESUMO

The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its effect remaining significant also after accounting for fertilization. The weakening of the portfolio effect with species richness decline is a crucial driver of community destabilization. However, the positive effect of species richness on temporal stability of total biomass was not due to increased compensatory dynamics, since synchrony increased with species richness. This shows that the negative effect of eutrophication on community stability does not operate through increasing synchrony, but through the reduction of diversity.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Ecologia , Eutrofização
8.
Nat Commun ; 8(1): 2235, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269832

RESUMO

Plants can plastically respond to light competition in three strategies, comprising vertical growth, which promotes competitive dominance; shade tolerance, which maximises performance under shade; or lateral growth, which offers avoidance of competition. Here, we test the hypothesis that plants can 'choose' between these responses, according to their abilities to competitively overcome their neighbours. We study this hypothesis in the clonal plant Potentilla reptans using an experimental setup that simulates both the height and density of neighbours, thus presenting plants with different light-competition scenarios. Potentilla reptans ramets exhibit the highest vertical growth under simulated short-dense neighbours, highest specific leaf area (leaf area/dry mass) under tall-dense neighbours, and tend to increase total stolon length under tall-sparse neighbours. These responses suggest shifts between 'confrontational' vertical growth, shade tolerance and lateral-avoidance, respectively, and provide evidence that plants adopt one of several alternative plastic responses in a way that optimally corresponds to prevailing light-competition scenarios.


Assuntos
Luz , Potentilla/crescimento & desenvolvimento , Tomada de Decisões , Meio Ambiente , Folhas de Planta
9.
Conserv Biol ; 31(1): 40-47, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27027266

RESUMO

Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat-specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Ecologia , Ecossistema , Espécies Introduzidas
10.
PLoS One ; 11(2): e0149270, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881747

RESUMO

Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data.


Assuntos
Biodiversidade , Característica Quantitativa Herdável , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...