Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(6): e07221, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189292

RESUMO

Different types of tuned mass dampers (TMD) have been applied to reduce wind and seismic induces vibrations in buildings. We analyze a pendulum tuned mass damper (PTMD) to reduce vibrations of structures that exhibit elastoplastic behavior subjected to ground motion excitation. Using a simple dynamic model of the primary structure with and without the PTMD and a random process description of the ground acceleration, the performance improvement of the structure is assessed using statistical linearization. The Liapunov equation is used to estimate the mean-square response in the stationary condition of the random process and optimize PTMD parameters. The optimum values of the PTMD frequency and damping ratio are defined as PTMD design values for a specific maximum seismic intensity design criterion. The results show that: (1) The values of the PTMD effectiveness criterion and the optimal design values of the frequency ratio are higher when the damping ratio of the primary structure decreases. (2) The performance of the optimized PTMD is higher when the structure exhibits a linear hysteresis loop (low seismic intensity). (3) The optimized PTMD controls the development of structural plasticity reducing vulnerability. (4) There is a strong dependence of the optimum PTMD parameters on the dynamic soil properties of the building foundation. (5) The PTMD performance improves as its mass increases. The optimum frequency ratio decreases, and the damping ratio increases as the mass of the pendulum increases. The PTMD designed and optimized with the proposed methodology reduces vibrations, controls the development of plasticity, and protects the primary structure, particularly in low and medium-intensity earthquakes.

2.
An Acad Bras Cienc ; 93(3): e20200924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076183

RESUMO

The objectives of this research were to study (1) the dispersion of MWCNTs in an aqueous system by three commercial admixtures (CAds) for concrete, and (2) the effect of CAds and MWCNTs on indirect tensile strength and electrical conductivity of MWCNTs-high early strength (HE) cement-mortar composites. To achieve the objectives, we dispersed MWCNTs in an aqueous system with (1) hydroxylated polymers-based water reducing plasticizer (HPs), a nonionic compound, (2) Naphthalene based superplasticizer (SNF), an anionic compound, and (3) calcium chloride-based accelerating agent (CC) a neutral amphoteric salt. We prepared a total of 242 samples grouped in three sets: (1) Plain mortar [PM] (water + HE cement + Sand), (2) [PM+CAd], and (3) [PM+CAd+MWCNTs]. The three CAds dispersed MWCNTs in an aqueous solution. The CC and HPs admixtures have a two-time bigger dispersing power than the SNF. They demand half of SNF's ultrasound energy for optimal dispersion. Although the SNF (anionic) based superplasticizer resulted incompatible with the HE cement, it improved the indirect tensile strength of [PM+SNF+MWCNTs] composite. In contrast, the CC (amphoteric) based accelerating agent was compatible with the HE cement; the CC adsorption on the MWCNTs surface favors an improvement in the electrical conductivity of [PM+CAd+MWCNTs] composite.


Assuntos
Materiais de Construção , Cimentos de Ionômeros de Vidro , Condutividade Elétrica , Resistência à Tração
3.
Heliyon ; 5(10): e02701, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720462

RESUMO

Ecuadorian páramo ecosystems (EPEs) function as water sources, contain large soil carbon stores and high levels of biodiversity, and support human populations. The EPEs are mainly herbaceous páramo (HP). To inform policy and management and help drive ecological science toward a better understanding of the HP ecosystem, and the relationships among its multiple ecosystem services, we asked: (1) What is the state of the HP regarding its land use/land cover (LULC)?; and (2) Is the HP being pushed away from its natural state or it is regenerating? To answer these questions, we assessed the LULC in central EPEs using Landsat 8 imagery, Object-Based Image Analysis (OBIA) and a Classification and Regression Trees (CART) algorithm. Results show that two-fifths of the paramo ecosystem remain as native HP (NHP) and two-fifths as anthropogenic HP (AHP). Although the anthropic alteration of the pedogenesis of young paramo soil leads to the establishment of AHP, we found evidence of regeneration and resilience of the NHP. The results of this study will be useful to scientists and decision-makers with interest in páramo ecosystems in central Ecuador. The proposed methodology is simple, fast, and could be implemented in other landscapes to establish comprehensive monitoring systems useful in landscape assessment and planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...