Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29459412

RESUMO

The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

2.
Rev Sci Instrum ; 86(8): 085103, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329229

RESUMO

We present newly developed tapered capillaries with a scintillator window, which enable us to count single protons at the RIKEN cell irradiation setup. Their potential for performing single proton irradiation experiments at our beamline setup is demonstrated with CR39 samples, showing a single proton detection fidelity of 98%.


Assuntos
Células/efeitos da radiação , Prótons , Contagem de Cintilação/instrumentação , Probabilidade
3.
Rev Sci Instrum ; 85(1): 014302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517788

RESUMO

We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 µm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a µm(3) resolution, while monitoring the target in real time during and after irradiation.


Assuntos
Ambiente Controlado , Microtecnologia/instrumentação , Aceleradores de Partículas/instrumentação , Prótons , Sobrevivência Celular , Desenho de Equipamento , Células HeLa , Humanos
4.
Nature ; 492(7428): 225-8, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23235875

RESUMO

Highly charged iron (Fe(16+), here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.

5.
Phys Rev Lett ; 107(14): 143002, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107188

RESUMO

We demonstrate resonant fluorescence laser spectroscopy in highly charged ions (HCI) stored in an electron beam ion trap by investigating the dipole-forbidden 1s(2)2s(2)2p (2)P(3/2)-(2)P(1/2) transition in boronlike Ar(13+) ions. Forced evaporative cooling yielded a high resolving power, resulting in an accurate wavelength determination to λ=441.255 68(26) nm. By applying stronger cooling and two-photon excitation, new optical frequency standards based upon ultrastable transitions in such HCI could be realized in the future, e.g., for the search of time variations of the fine-structure constant.

6.
Phys Rev Lett ; 105(18): 183001, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231102

RESUMO

Photoionization (PI) of Fe14+ in the range from 450 to 1100 eV was measured at the BESSY II storage ring using an electron beam ion trap achieving high target-ion area densities of 10(10) cm(-2). Photoabsorption by this ion is observed in astrophysical spectra and plasmas, but until now cross sections and resonance energies could only be provided by calculations. We reach a resolving power E/ΔE of at least 6500, outstanding in the present energy range, which enables benchmarking and improving the most advanced theories for PI of ions in high charge states.

7.
Phys Rev Lett ; 98(18): 183001, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17501569

RESUMO

In a proof-of-principle experiment, we demonstrate high-resolution resonant laser excitation in the soft x-ray region at 48.6 eV of the 2 (2)S(1/2) to 2 (2)P(1/2) transition of Li-like Fe23+ ions trapped in an electron beam ion trap by using ultrabrilliant light from Free Electron Laser in Hamburg (FLASH). High precision spectroscopic studies of highly charged ions at this and upcoming x-ray lasers with an expected accuracy gain up to a factor of a thousand, become possible with our technique, thus potentially yielding fundamental insights, e.g., into basic aspects of QED.


Assuntos
Lasers , Espectrometria por Raios X/métodos , Íons , Ferro/química , Fótons , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...