Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291334

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Assuntos
Corpo Estriado , Doença de Huntington , Humanos , Animais , Cerebelo/metabolismo , Doença de Huntington/genética , Modelos Animais de Doenças
2.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237588

RESUMO

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Assuntos
Doença de Huntington , Animais , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Córtex Cerebral/metabolismo , Núcleo Solitário/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Acta Neuropathol Commun ; 12(1): 10, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229173

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ratos , Camundongos , Animais , AVC Isquêmico/metabolismo , Ratos Sprague-Dawley , Encéfalo/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Acidente Vascular Cerebral/metabolismo , Infarto Cerebral/metabolismo , Inflamação/metabolismo
4.
Mol Pain ; 19: 17448069231183902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37285551

RESUMO

Background: Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. Experimental Approach: In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. Key Results: Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm, apoptosis, and immune system processes. Conclusions: Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (Per2, Per3, Dbp). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.


Assuntos
Analgésicos Opioides , Morfina , Ratos , Masculino , Feminino , Animais , Morfina/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Microglia , Transcriptoma/genética , Analgésicos/farmacologia , Dor/metabolismo , Medula Espinal/metabolismo
5.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333326

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

6.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37162977

RESUMO

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.

7.
J Neurosci Res ; 100(1): 329-338, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459013

RESUMO

Opioids are effective analgesics in the management of severe pain. However, tolerance, leading to dose escalation and adverse effects are significant limiting factors in their use. The role of peripheral opioid receptors in analgesia has been discussed especially under inflammatory conditions. The results from pharmacological and conditional knockout studies together do not provide a clear picture of the contribution of peripheral opioid receptors on antinociceptive tolerance and this needs to be evaluated. Therefore, we studied whether the peripherally restricted opioid receptor antagonist, methylnaltrexone (MNTX), could prevent morphine tolerance without attenuating the antinociceptive effect of morphine. Male Sprague-Dawley rats were treated for 7 days with increasing subcutaneous doses of morphine (5-30 mg/kg) and were coadministered saline, MNTX (0.5 or 2 mg/kg), or naltrexone (NTX; 2 mg/kg). Nociception was assessed with tail-flick, hotplate, and von Frey tests. Morphine, MNTX, and NTX concentrations in the plasma, brain, and spinal cord were measured by liquid chromatography-tandem mass spectrometry. In acute coadministration, NTX, but not MNTX, abolished the acute antinociceptive effects of morphine in all nociceptive tests. The antinociceptive tolerance after repeated morphine administration was also prevented by NTX but not by MNTX. MNTX penetrated to the spinal cord and the brain to some extent after repeated administration. The results do not support the use of MNTX for preventing opioid tolerance and also suggest that morphine tolerance is mediated by central rather than peripheral opioid receptors in the rat.


Assuntos
Morfina , Naltrexona , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Masculino , Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Compostos de Amônio Quaternário , Ratos , Ratos Sprague-Dawley , Receptores Opioides , Receptores Opioides mu
8.
Eur J Pharm Sci ; 154: 105493, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730846

RESUMO

Toll-like receptor 4 (TLR4) recognizes various endogenous and microbial ligands and is an essential part in the innate immune system. TLR4 signaling initiates transcription factor NF-κB and production of proinflammatory cytokines. TLR4 contributes to the development or progression of various diseases including stroke, neuropathic pain, multiple sclerosis, rheumatoid arthritis and cancer, and better therapeutics are currently sought for these conditions. In this study, a library of 140 000 compounds was virtually screened and a resulting hit-list of 1000 compounds was tested using a cellular reporter system. The topoisomerase II inhibitor mitoxantrone and its analogues pixantrone and mitoxantrone (2-hydroxyethyl)piperazine were identified as inhibitors of TLR4 and NF-κB activation. Mitoxantrone was shown to bind directly to the TLR4, and pixantrone and mitoxantrone (2-hydroxyethyl)piperazine were shown to inhibit the production of proinflammatory cytokines such as tumor necrosis factor alpha (TNFα) in primary microglia. The inhibitory effect on NF-κB activation or on TNFα production was not mediated through cytotoxity at ≤ 1 µM concentration for pixantrone and mitoxantrone (2-hydroxyethyl)piperazine treated cells, as assessed by ATP counts. This study thus identifies a new mechanism of action for mitoxantrone, pixantrone, and mitoxantrone (2-hydroxyethyl)piperazine through the TLR4.


Assuntos
Isoquinolinas , NF-kappa B , Piperazina , Receptor 4 Toll-Like , Isoquinolinas/farmacologia , Microglia , Mitoxantrona/farmacologia , NF-kappa B/efeitos dos fármacos , Piperazina/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
9.
Exp Neurol ; 329: 113288, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229226

RESUMO

The peri-infarct region after ischemic stroke is the anatomical location for many of the endogenous recovery processes; however, -the molecular events in the peri-infarct region remain poorly characterized. In this study, we examine the molecular profile of the peri-infarct region on post-stroke day four, a time when reparative processes are ongoing. We used a multiomics approach, involving RNA sequencing, and mass spectrometry-based proteomics and metabolomics to characterize molecular changes in the peri-infarct region. We also took advantage of our previously developed method to express transgenes in the peri-infarct region where self-complementary adeno-associated virus (AAV) vectors were injected into the brain parenchyma on post-stroke day 2. We have previously used this method to show that mesencephalic astrocyte-derived neurotrophic factor (MANF) enhances functional recovery from stroke and recruits phagocytic cells to the peri-infarct region. Here, we first analyzed the effects of stroke to the peri-infarct region on post-stroke day 4 in comparison to sham-operated animals, finding that strokeinduced changes in 3345 transcripts, 341 proteins, and 88 metabolites. We found that after stroke, genes related to inflammation, proliferation, apoptosis, and regeneration were upregulated, whereas genes encoding neuroactive ligand receptors and calcium-binding proteins were downregulated. In proteomics, we detected upregulation of proteins related to protein synthesis and downregulation of neuronal proteins. Metabolomic studies indicated that in after stroke tissue there is an increase in saccharides, sugar phosphates, ceramides and free fatty acids and a decrease of adenine, hypoxantine, adenosine and guanosine. We then compared the effects of post-stroke delivery of AAV1-MANF to AAV1-eGFP (enhanced green fluorescent protein). MANF administration increased the expression of 77 genes, most of which were related to immune response. In proteomics, MANF administration reduced S100A8 and S100A9 protein levels. In metabolomics, no significant differences between MANF and eGFP treatment were detected, but relative to sham surgery group, most of the changes in lipids were significant in the AAV-eGFP group only. This work describes the molecular profile of the peri-infarct region during recovery from ischemic stroke, and establishes a resource for further stroke studies. These results provide further support for parenchymal MANF as a modulator of phagocytic function.


Assuntos
Infarto Cerebral/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteômica/métodos , Acidente Vascular Cerebral/genética , Transcriptoma/genética , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Técnicas de Transferência de Genes , Masculino , Metabolômica/métodos , Fatores de Crescimento Neural/administração & dosagem , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fatores de Tempo
10.
Front Neurosci ; 13: 590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244598

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) has shown therapeutic potential in rodent and non-human primate models of Parkinson's disease by protecting the dopamine neurons from degeneration and even restoring their phenotype and function. Previously, neurorestorative efficacy of CDNF in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease as well as diffusion of the protein in the striatum (STR) has been demonstrated and studied. Here, experiments were performed to characterize the diffusion and transport of supra-nigral CDNF in non-lesioned rats. We injected recombinant human CDNF to the substantia nigra (SN) of naïve male Wistar rats and analyzed the brains 2, 6, and 24 h after injections. We performed immunohistochemical stainings using an antibody specific to human CDNF and radioactivity measurements after injecting iodinated CDNF. Unlike the previously reported striatonigral retrograde transport seen after striatal injection, active anterograde transport of CDNF to the STR could not be detected after nigral injection. There was, however, clear diffusion of CDNF to the brain areas surrounding the SN, and CDNF colocalized with tyrosine hydroxylase (TH)-positive neurons. Overall, our results provide insight on how CDNF injected to the SN may act in this region of the brain.

11.
Sci Adv ; 4(5): eaap8957, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806020

RESUMO

Stroke is the most common cause of adult disability in developed countries, largely because spontaneous recovery is often incomplete, and no pharmacological means to hasten the recovery exist. It was recently shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) induces alternative or M2 activation of immune cells after retinal damage in both fruit fly and mouse and mediates retinal repair. Therefore, we set out to study whether poststroke MANF administration would enhance brain tissue repair and affect behavioral recovery of rats after cerebral ischemic injury. We used the distal middle cerebral artery occlusion (dMCAo) model of ischemia-reperfusion injury and administered MANF either as a recombinant protein or via adeno-associated viral (AAV) vector. We discovered that, when MANF was administered to the peri-infarct region 2 or 3 days after stroke, it promoted functional recovery of the animals without affecting the lesion volume. Further, AAV7-MANF treatment transiently increased the number of phagocytic macrophages in the subcortical peri-infarct regions. In addition, the analysis of knockout mice revealed the neuroprotective effects of endogenous MANF against ischemic injury, although endogenous MANF had no effect on immune cell-related gene expression. The beneficial effect of MANF treatment on the reversal of stroke-induced behavioral deficits implies that MANF-based therapies could be used for the repair of brain tissue after stroke.


Assuntos
Astrócitos/metabolismo , Fatores de Crescimento Neural/genética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/metabolismo , Animais , Comportamento Animal , Isquemia Encefálica/complicações , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Fatores de Crescimento Neural/metabolismo , Ratos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/etiologia , Transdução Genética , Transgenes
12.
eNeuro ; 5(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766045

RESUMO

Ischemic stroke is the leading cause of disability, and effective therapeutic strategies are needed to promote complete recovery. Neuroinflammation plays a significant role in stroke pathophysiology, and there is limited understanding of how it affects recovery. The aim of this study was to characterize the spatiotemporal expression profile of microglial activation and whether dampening microglial/macrophage activation post-stroke facilitates the recovery. For dampening microglial/macrophage activation, we chose intranasal administration of naloxone, a drug that is already in clinical use for opioid overdose and is known to decrease microglia/macrophage activation. We characterized the temporal progression of microglia/macrophage activation following cortical ischemic injury in rat and found the peak activation in cortex 7 d post-stroke. Unexpectedly, there was a chronic expression of phagocytic cells in the thalamus associated with neuronal loss. (+)-Naloxone, an enantiomer that reduces microglial activation without antagonizing opioid receptors, was administered intranasally starting 1 d post-stroke and continuing for 7 d. (+)-Naloxone treatment decreased microglia/macrophage activation in the striatum and thalamus, promoted behavioral recovery during the 14-d monitoring period, and reduced neuronal death in the lesioned cortex and ipsilateral thalamus. Our results are the first to show that post-stroke intranasal (+)-naloxone administration promotes short-term functional recovery and reduces microglia/macrophage activation. Therefore, (+)-naloxone is a promising drug for the treatment of ischemic stroke, and further studies should be conducted.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Tálamo/efeitos dos fármacos , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Ratos , Ratos Sprague-Dawley
13.
Eur J Med Chem ; 151: 495-507, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29649744

RESUMO

Despite extensive years of research, the direct oxidation of the 7,8-double bond of opioids has so far received little attention and knowledge about the effects of this modification on activity at the different opioid receptors is scarce. We herein report that potassium permanganate supported on iron(II) sulfate heptahydrate can be used as a convenient oxidant in the one-step, heterogeneous conversion of Δ7,8-opioids to the corresponding 7ß-hydroxy-8-ketones. Details of the reaction mechanism are given and the effects of the substituent at position 6 of several opioids on the reaction outcome is discussed. The opioid hydroxy ketones prepared are antagonists at the mu- and delta-opioid receptors. Docking simulations and detailed structure-activity analysis revealed that the presence of the 7ß-hydroxy-8-ketone functionality in the prepared compounds can be used to gain activity towards the delta opioid receptor. The 7ß-hydroxy-8-ketones prepared with this method can also be regarded as versatile intermediates for the synthesis of other opioids of interest.


Assuntos
Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Analgésicos Opioides/síntese química , Células HEK293 , Humanos , Cetonas/síntese química , Cetonas/química , Cetonas/farmacologia , Modelos Moleculares , Antagonistas de Entorpecentes/síntese química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade
14.
Neuroscience ; 375: 10-24, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421434

RESUMO

Development of tolerance is a well known pharmacological characteristic of opioids and a major clinical problem. In addition to the known neuronal mechanisms of opioid tolerance, activation of glia has emerged as a potentially significant new mechanism. We studied activation of microglia and astrocytes in morphine tolerance and opioid-induced hyperalgesia in rats using immunohistochemistry, flow cytometry and RNA sequencing in spinal- and supraspinal regions. Chronic morphine treatment that induced tolerance and hyperalgesia also increased immunoreactivity of spinal microglia in the dorsal and ventral horns. Flow cytometry demonstrated that morphine treatment increased the proportion of M2-polarized spinal microglia, but failed to impact the number or the proportion of M1-polarized microglia. In the transcriptome of microglial cells isolated from the spinal cord (SC), morphine treatment increased transcripts related to cell activation and defense response. In the studied brain regions, no activation of microglia or astrocytes was detected by immunohistochemistry, except for a decrease in the number of microglial cells in the substantia nigra. In flow cytometry, morphine caused a decrease in the number of microglial cells in the medulla, but otherwise no change was detected for the count or the proportion of M1- and M2-polarized microglia in the medulla or sensory cortex. No evidence for the activation of glia in the brain was seen. Our results suggest that glial activation associated with opioid tolerance and opioid-induced hyperalgesia occurs mainly at the spinal level. The transcriptome data suggest that the microglial activation pattern after chronic morphine treatment has similarities with that of neuropathic pain.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/efeitos dos fármacos , Morfina/farmacologia , Neuroglia/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Tolerância a Medicamentos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Modelos Animais , Neuroglia/metabolismo , Neuroglia/patologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/metabolismo , Dor Nociceptiva/patologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia , Transcriptoma/efeitos dos fármacos
15.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275710

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson's disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported. The first aim of this study was to examine the cellular localization and pharmacokinetic properties of recombinant human CDNF (rhCDNF) protein after its infusion into rat brain parenchyma. Second, we aimed to study whether the transport of rhCDNF from the striatum to the SN results from its retrograde transport via DA neurons or from its anterograde transport via striatal GABAergic projection neurons. We show that after intrastriatal infusion, rhCDNF diffuses rapidly and broadly, and is cleared with a half-life of 5.5 h. Confocal microscopy analysis of brain sections at 2 and 6 h after infusion of rhCDNF revealed its widespread unspecific internalization by cortical and striatal neurons, exhibiting different patterns of subcellular rhCDNF distribution. Electron microscopy analysis showed that rhCDNF is present inside the endosomes and multivesicular bodies. In addition, we present data that after intrastriatal infusion the rhCDNF found in the SN is almost exclusively localized to the DA neurons, thus showing that it is retrogradely transported.


Assuntos
Corpo Estriado/metabolismo , Endocitose/fisiologia , Fatores de Crescimento Neural/administração & dosagem , Substância Negra/metabolismo , Adrenérgicos/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/ultraestrutura , Endocitose/efeitos dos fármacos , Humanos , Masculino , Camundongos , Microscopia Imunoeletrônica , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/ultraestrutura , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Oxidopamina/farmacologia , Fosfopiruvato Hidratase/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Transgênicos , Ratos Wistar , Substância Negra/efeitos dos fármacos , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Neurobiol Dis ; 96: 335-345, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27425888

RESUMO

In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.


Assuntos
Desenho de Fármacos , Variação Genética/genética , Neurturina/química , Neurturina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Anfetamina/farmacologia , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Masculino , Modelos Moleculares , Neurturina/genética , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Ratos Wistar , Comportamento Estereotipado/efeitos dos fármacos , Simpatolíticos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Cell Mol Life Sci ; 72(9): 1779-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25601223

RESUMO

During the past decade, the identification of microRNA (miR) targets has become common laboratory practice, and various strategies are now used to detect interactions between miRs and their mRNA targets. However, the current lack of a standardized identification process often leads to incomplete and/or conflicting results. Here, we review the problems most commonly encountered when verifying miR-mRNA interactions, and we propose a workflow for future studies. To illustrate the challenges faced when validating a miR target, we discuss studies in which the regulation of brain-derived neurotrophic factor by miRs was investigated, and we highlight several controversies that emerged from these studies. Finally, we discuss the therapeutic use of miR inhibitors, and we discuss several questions that should be addressed before proceeding to preclinical testing.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Regulação da Expressão Gênica , Humanos , MicroRNAs/análise , MicroRNAs/genética , RNA Mensageiro/análise , RNA Mensageiro/genética
18.
J Neurosci Methods ; 236: 107-13, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25152446

RESUMO

BACKGROUND: For stroke patients the recovery of cognitive and behavioral functions is often incomplete. Functional recovery is thought to be mediated largely by connectivity rearrangements in the peri-infarct region. A method for manipulating gene expression in this region would be useful for identifying new recovery-enhancing treatments. NEW METHOD: We have characterized a way of targeting adeno-associated virus (AAV) vectors to the peri-infarct region of cortical ischemic lesion in rats 2days after middle cerebral artery occlusion (MCAo). RESULTS: We used magnetic resonance imaging (MRI) to show that the altered properties of post-ischemic brain tissue facilitate the spreading of intrastriatally injected nanoparticles toward the infarct. We show that subcortical injection of green fluorescent protein-encoding dsAAV7-GFP resulted in transduction of cells in and around the white matter tract underlying the lesion, and in the cortex proximal to the lesion. A similar result was achieved with dsAAV7 vector encoding the cerebral dopamine neurotrophic factor (CDNF), a protein with therapeutic potential. COMPARISON WITH EXISTING METHODS: Viral vector-mediated intracerebral gene delivery has been used before in rodent models of ischemic injury. However, the method of targeting gene expression to the peri-infarct region, after the initial phase of ischemic cell death, has not been described before. CONCLUSIONS: We demonstrate a straightforward and robust way to target AAV vector-mediated over-expression of genes to the peri-infarct region in a rat stroke model. This method will be useful for studying the action of specific proteins in peri-infarct region during the recovery process.


Assuntos
Encéfalo/fisiopatologia , Dependovirus/genética , Expressão Gênica , Vetores Genéticos , Acidente Vascular Cerebral/fisiopatologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Isquemia Encefálica/virologia , Modelos Animais de Doenças , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Infarto da Artéria Cerebral Média , Imageamento por Ressonância Magnética , Masculino , Nanopartículas Metálicas , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/virologia , Transdução Genética/métodos
19.
J Neurosci Res ; 91(6): 780-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23426908

RESUMO

During embryonic development, neurons are first produced in excess, and final numbers are adjusted by apoptosis at later stages. Crucial to this end is the amount of target-derived growth factor available for the neurons. By this means, the target size correctly matches the innervating neuron number. This target-derived survival has been well studied for sympathetic neurons, and nerve growth factor (NGF) was identified to be the crucial factor for maintaining sympathetic neurons at late embryonic and early postnatal stages, with a virtual complete loss of sympathetic neurons in NGF knockout (KO) mice. This indicates that all sympathetic neurons are dependent on NGF. However, also different glia cell line-derived neurotrophic factor (GDNF) KO mice consistently presented a loss of sympathetic neurons. This was the rationale for investigating the role of GDNF for sympathetic precursor/neuron survival. Here we show that GDNF is capable of promoting survival of 30% sympathetic precursors dissociated at E13. This is in line with data from GDNF KOs in which a comparable sympathetic neuron loss was observed at late embryonic stages, although the onset of the phenotype was unclear. We further present data showing that GDNF ligand and canonical receptors are expressed in sympathetic neurons especially at embryonic stages, raising the possibility of an autocrine/paracrine GDNF action. Finally, we show that GDNF also maintained neonatal sympathetic neurons (40%) cultured for 2 days. However, the GDNF responsiveness was lost at 5 days in vitro.


Assuntos
Fibras Adrenérgicas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Embrião de Mamíferos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Cell Mol Life Sci ; 69(11): 1903-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22481440

RESUMO

The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia. The mechanism of PCSK9 function and its involvement in neuronal apoptosis is poorly understood. We show here that RNAi-mediated knockdown of PCSK9 significantly reduced the death of potassium-deprived cerebellar granule neurons (CGN), as shown by reduced levels of nuclear phosphorylated c-Jun and activated caspase-3, as well as condensed apoptotic nuclei. ApoER2 protein levels were increased in PCSK9 RNAi cells. Knockdown of ApoER2 but not of VLDLR was sufficient to reverse the protection provided by PCSK9 RNAi, suggesting that proapoptotic signaling of PCSK9 is mediated by altered ApoER2 function. Pharmacological inhibition of signaling pathways associated with lipoprotein receptors suggested that PCSK9 regulates neuronal apoptosis independently of NMDA receptor function but in concert with ERK and JNK signaling pathways. PCSK9 RNAi also reduced staurosporine-induced CGN apoptosis and axonal degeneration in the nerve growth factor-deprived dorsal root ganglion neurons. We conclude that PCSK9 potentiates neuronal apoptosis via modulation of ApoER2 levels and related anti-apoptotic signaling pathways.


Assuntos
Apoptose/fisiologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios/citologia , Pró-Proteína Convertases/fisiologia , Serina Endopeptidases/fisiologia , Animais , Caspase 3/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Fosforilação , Potássio/metabolismo , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...