Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(10): 1536-1549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869866

RESUMO

Human neutrophils are components of the innate immune system and are the most abundant white blood cells in the circulation. They are professional phagocytes and express several G protein-coupled receptors (GPCRs), which are essential for proper neutrophil functions. So far, the two formyl peptide receptors, FPR1 and FPR2, have been the most extensively studied group of neutrophil GPCRs, but recently, a new group, the free fatty acid (FFA) receptors, has attracted growing attention. Neutrophils express two FFA receptors, GPR84 and FFA2, which sense medium- and short-chain fatty acids respectively, and display similar activation profiles. The exact pathophysiological role of GPR84 is not yet fully understood, but it is generally regarded as a pro-inflammatory receptor that mediates neutrophil activation. In this review, we summarize current knowledge of how GPR84 affects human neutrophil functions and discuss the regulatory mechanisms that control these responses, focusing on the similarities and differences in comparison to the two FPRs and FFA2. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Assuntos
Neutrófilos , Transdução de Sinais , Humanos , Receptores de Formil Peptídeo , Fagócitos , Receptores Acoplados a Proteínas G
2.
Biochem Pharmacol ; 211: 115529, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004778

RESUMO

Formyl peptide receptor 1 (FPR1), a G protein-coupled receptor expressed in phagocytes, recognizes short N-formylated peptides originating from proteins synthesized by bacteria and mitochondria. Such FPR1 agonists are important regulators of neutrophil functions and by that, determinants of inflammatory reactions. As FPR1 is implicated in promoting both pro-inflammatory and pro-resolving responses associated with inflammatory diseases, characterization of ligands that potently and selectively modulate FPR1 induced functions might be of high relevance. Accordingly, a number of FPR1 specific antagonists have been identified and shown to inhibit agonist binding or receptor down-stream signaling as well as neutrophil functions such as granule secretion and NADPH oxidase activity. The inhibitory effect on neutrophil chemotaxis induced by FPR1 agonists has generally not been part of basic antagonist characterization. In this study we show that the inhibitory effects on neutrophil chemotaxis of established FPR1 antagonists (i.e., cyclosporin H, BOC1 and BOC2) are limited. Our data demonstrate that the recently described small molecule AZ2158 is a potent and selective FPR1 antagonist in human neutrophils. In contrast to the already established FPR1 antagonists, AZ2158 also potently inhibits chemotaxis. Whereas the cyclosporin H inhibition was agonist selective, AZ2158 inhibited the FPR1 response induced by both a balanced and a biased FPR1 agonist equally well. In accordance with the species specificity described for many FPR1 ligands, AZ2158 was not recognized by the mouse orthologue of FPR1. Our data demonstrate that AZ2158 may serve as an excellent tool compound for further mechanistic studies of human FPR1 mediated activities.


Assuntos
Neutrófilos , Receptores de Formil Peptídeo , Humanos , Animais , Camundongos , Receptores de Formil Peptídeo/metabolismo , Quimiotaxia , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
J Leukoc Biol ; 113(6): 577-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999365

RESUMO

Neutrophils express many surface receptors that sense environmental changes. One such sensor is FFAR2 (free fatty acid receptor 2), a receptor that detects gut microbiota-derived short-chain fatty acids. As such, FFAR2 has been regarded as a molecular link between metabolism and inflammation. Our recent studies on FFAR2, using its endogenous agonist propionate in combination with allosteric modulators, have identified several novel aspects of FFAR2 regulation. A recent study has also identified the ketone body acetoacetate as an endogenous ligand for mouse FFAR2. Whether human FFAR2 also recognizes acetoacetate and how this recognition modulates human neutrophil functions has not been investigated. In this study, we found that acetoacetate can induce a decrease of cAMP and translocation of ß-arrestin in cells overexpressing FFAR2. In addition, we show that similar to propionate, FFAR2-specific allosteric modulators enhance acetoacetate-induced transient rise in cytosolic calcium, production of reactive oxygen species, and cell migration in human neutrophils. In summary, we demonstrate that human neutrophils recognize the ketone body acetoacetate through FFAR2. Thus, our data further highlight the key role of FFAR2 in inflammation and metabolism.


Assuntos
Propionatos , Receptores Acoplados a Proteínas G , Humanos , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Propionatos/farmacologia , Neutrófilos/metabolismo , Acetoacetatos/farmacologia , Acetoacetatos/metabolismo , Corpos Cetônicos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo
4.
Immunol Rev ; 314(1): 69-92, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285739

RESUMO

Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.


Assuntos
Neutrófilos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/farmacologia , Regulação Alostérica
5.
Biochim Biophys Acta Mol Cell Res ; 1869(7): 119262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341806

RESUMO

In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by ß-arrestin recruitment data. The ROS production induced by a non ß-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this ß-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with ß-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , NADPH Oxidases , Neutrófilos , Receptores Acoplados a Proteínas G , beta-Arrestinas , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , NADP/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , beta-Arrestinas/metabolismo
6.
Biochem Pharmacol ; 193: 114762, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499871

RESUMO

The allosteric modulating free fatty acid receptor 2 ligands Cmp58 and AZ1729, increased the activity induced by orthosteric receptor agonists mediating a rise in intracellular calcium ions and activation of the neutrophil NADPH-oxidase. Together, the two modulators triggered an orthosteric-agonist-independent activation of the oxidase without any rise in the concentration of intracellular calcium ions. In this study, structurally diverse compounds presumed to be ligands for free fatty acid receptor 2 were used to gain additional insights into receptor-modulation/signaling. We identified two molecules that activate neutrophils on their own and we classified one as allosteric agonist and the other as orthosteric agonist. Ten compounds were classified as allosteric FFA2R modulators. Of these, one activated neutrophils when combined with AZ1729; the nine remaining compounds activated neutrophils solely when combined with Cmp58. The activation signals were primarily biased when stimulated by two allosteric modulators interacting with different binding sites, such that two complementary modulators together triggered an activation of the NADPH-oxidase but no increase in the intracellular concentration of calcium ions. No neutrophil activation was induced when allosteric receptor modulators suggested to be recognized by the same binding site were combined, results in agreement with our proposed model for activation, in which the receptor has two different sites that selectively bind allosteric modulators. The down-stream signaling mediated by cross-sensitizing allosteric receptor modulators, occurring independent of any orthosteric agonist, represent a new mechanism for activation of the neutrophil NADPH oxidase.


Assuntos
Guanidinas/farmacologia , Isoquinolinas/farmacologia , Neutrófilos/fisiologia , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/metabolismo , Cálcio/metabolismo , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/química , Humanos , Isoquinolinas/química , Ligantes , Estrutura Molecular , NADPH Oxidases , Relação Estrutura-Atividade
7.
J Innate Immun ; 13(4): 242-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33789297

RESUMO

Neutrophils express the two formyl peptide receptors (FPR1 and FPR2) and the medium-chain fatty acid receptor GPR84. The FPRs are known to define a hierarchy among neutrophil G protein-coupled receptors (GPCRs), that is, the activated FPRs can either suppress or amplify GPCR responses. In this study, we investigated the position of GPR84 in the FPR-defined hierarchy regarding the activation of neutrophil nicotine adenine dinucleotide phosphate (NADPH) oxidase, an enzyme system designed to generate reactive oxygen species (ROS), which are important regulators in cell signaling and immune regulation. When resting neutrophils were activated by GPR84 agonists, a modest ROS release was induced. However, vast amounts of ROS were induced by these GPR84 agonists in FPR2-desensitized neutrophils, and the response was inhibited not only by a GPR84-specific antagonist but also by an FPR2-specific antagonist. This suggests that the amplified GPR84 agonist response is achieved through a reactivation of desensitized FPR2s. In addition, the GPR84-mediated FPR2 reactivation was independent of ß-arrestin recruitment and sensitive to a protein phosphatase inhibitor. In contrast to FPR2-desensitized cells, FPR1 desensitization primarily resulted in a suppressed GPR84 agonist-induced ROS response, indicating a receptor hierarchical desensitization of GPR84 by FPR1-generated signals. In summary, our data show that the two FPRs in human neutrophils control the NADPH oxidase activity with concomitant ROS production by communicating with GPR84 through different mechanisms. While FPR1 desensitizes GPR84 and by that suppresses the release of ROS induced by GPR84 agonists, amplified ROS release is achieved by GPR84 agonists through reactivation of the desensitized FPR2.


Assuntos
NADPH Oxidases , Receptores de Formil Peptídeo , Receptores de Lipoxinas , Adenina , Humanos , Ativação de Neutrófilo , Neutrófilos , Fosfatos , Receptores Acoplados a Proteínas G
8.
ACS Pharmacol Transl Sci ; 3(2): 203-220, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296763

RESUMO

Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.

9.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118689, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092308

RESUMO

The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2Y2R specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist. The activation signals down-stream of FFAR2 when stimulated by the two interdependent allosteric modulators were biased in that, unlike for orthosteric agonists, the two complementary modulators together triggered an activation of the NADPH-oxidase, but not any transient rise in the cytosolic concentration of free calcium ions (Ca2+). Furthermore, following AZ1729/Cmp58 activation, the signaling by the desensitized FFAR2s was functionally selective in that the orthosteric agonist propionate could still induce a transient rise in intracellular Ca2+. The novel neutrophil activation and receptor down-stream signaling pattern mediated by the two cross-sensitizing allosteric FFAR2 modulators represent a new regulatory mechanism that controls receptor signaling.


Assuntos
Benzamidas/farmacologia , Neutrófilos/metabolismo , Fenilbutiratos/farmacologia , Receptores de Superfície Celular/agonistas , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Benzamidas/química , Cálcio/metabolismo , Sinergismo Farmacológico , Humanos , Estrutura Molecular , NADPH Oxidases/metabolismo , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Fenilbutiratos/química , Propionatos/metabolismo , Receptores de Superfície Celular/química , Transdução de Sinais/efeitos dos fármacos
10.
J Immunol ; 202(9): 2710-2719, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902901

RESUMO

Similar to bacteria, synthesis of mitochondrial DNA-encoded proteins requires an N-formylated methionine to initiate translation. Thus, the N-formylated methionine peptides originating from mitochondria should be recognized as danger signals. To date, only one such peptide, denoted as mitocryptide-2 (MCT-2), originating from the N-terminal of the mitochondrial cytochrome b, has been isolated from mammalian tissues. Human neutrophils express FPR1 and FPR2 that detect formyl peptides, and the precise structural determinants for receptor recognition remain to be elucidated. MCT-2 is known to activate neutrophils through FPR2 but not FPR1. The aim of this study was to elucidate the structural determinants of importance for receptor preference and human neutrophil activation in MCT-2 by generating a series of MCT-2 variants. We show that there is an absolute requirement for the N-formyl group and the side chain of Met1 at position 1 of MCT-2 but also the C terminus is of importance for MCT-2 activity. We also uncovered individual side chains that positively contribute to MCT-2 activity as well as those suppressed in the response. The MCT-2 peptide and its two polymorphic variants ([Thr7]MCT-2 and [Ser8]MCT-2) all activated neutrophils, but MCT-2 containing Ile7 and Asn8 was the most potent. We also show that some peptide variants displayed a biased FPR2-signaling property related to NADPH oxidase activation and ß-arrestin recruitment, respectively. In conclusion, we disclose several critical elements in MCT-2 that are required for neutrophil activation and disclose structural insights into how FPR2 recognition of this mitochondrial DNA-derived peptide may increase our understanding of the role of FPR2 in aseptic inflammation.


Assuntos
Citocromos b/imunologia , DNA Mitocondrial/imunologia , Proteínas Mitocondriais/imunologia , Neutrófilos/imunologia , Peptídeos/imunologia , Receptores de Formil Peptídeo/imunologia , Receptores de Lipoxinas/imunologia , Citocromos b/química , Feminino , Humanos , Masculino , Proteínas Mitocondriais/química , Peptídeos/química , Receptores de Formil Peptídeo/química , Receptores de Lipoxinas/química
11.
FASEB J ; 33(6): 6887-6903, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30808243

RESUMO

A nonactivating allosteric modulator of free fatty acid receptor 2 (FFA2R, also called GPCR 43) turns both propionate (an orthosteric FFA2R agonist) and ATP (an agonist for the purinergic P2Y2 receptor), into potent activating ligands that trigger an assembly of the superoxide-generating neutrophil NADPH oxidase. The ATP-induced activation requires the participation of FFA2R, and the signaling is biased toward oxidase activation, leaving the ATP-induced rise in intracellular Ca2+ unaffected. No NADPH oxidase activity was induced by ATP when propionate replaced the allosteric modulator. Signaling downstream of propionate-activated FFA2Rs was insensitive to Gαq inhibition, but the crosstalk activation involving both FFA2R and P2Y2R relied on Gαq signaling. The receptor crosstalk, by which allosterically modulated FFA2Rs communicate with P2Y2Rs and generate NADPH oxidase activating signals downstream of Gαq, represent a novel mechanism by which GPCR activities can be regulated from inside the plasma membrane. Further, the finding that an allosteric FFA2R modulator sensitizes not only the response induced by orthosteric FFA2R agonists, but also the response induced by ATP (P2Y2R-specific agonist) and formyl peptide receptor-specific agonists, violates the receptor restriction characteristics normally defining the selectivity of allosteric GPCR modulators.-Lind, S., Holdfeldt, A., Mårtensson, J., Sundqvist, M., Björkman, L., Forsman, H., Dahlgren, C. Functional selective ATP receptor signaling controlled by the free fatty acid receptor 2 through a novel allosteric modulation mechanism.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , NADPH Oxidases/metabolismo , Propionatos/farmacologia , Receptores de Superfície Celular/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2/metabolismo , Regulação Alostérica , Células Cultivadas , Humanos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NADPH Oxidases/química , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Superfície Celular/química , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2Y2/química , Transdução de Sinais
12.
J Leukoc Biol ; 105(6): 1123-1130, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30570778

RESUMO

Recruitment of neutrophils from blood to tissues is a cardinal event in inflammation during which neutrophils switch from a resting, naive state to a preactivated, primed phenotype; the priming process is characterized by alterations in the composition of cell surface adhesins, for example, shedding of l-selectin and mobilization of granule-stored integrins to the cell surface. Ligation of chemotactic receptors and interactions with the endothelial lining are established triggers of neutrophil priming and in line with this, in vivo transmigrated neutrophils obtained from tissues are typically highly primed. We here characterize the priming of neutrophils brought about by in vivo recruitment from blood to inflamed joints by the analyses of synovial fluid and blood from patients with inflammatory arthritis. For comparisons, we used controlled in vivo models of neutrophil transmigration to skin of healthy subjects. In contrast to the residing view and in vivo transmigrated neutrophils from skin models, neutrophils from synovial fluid were often surprisingly resting and phenotypically very similar to naive cells isolated from peripheral blood; synovial fluid cells often retained l-selectin and had undergone minimal up-regulation of integrin receptors. In complete agreement with our in vivo findings, cell-free synovial fluid was potently chemotactic without triggering alteration of surface receptors also in vitro. We conclude that tissue recruitment of neutrophils does not by default trigger l-selectin shedding and granule mobilization, and the chemoattractant(s) guiding neutrophils to synovial fluid apparently operate without inducing cellular priming.


Assuntos
Artrite/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Líquido Sinovial/imunologia , Artrite/patologia , Feminino , Humanos , Selectina L/imunologia , Masculino , Regulação para Cima/imunologia
13.
J Leukoc Biol ; 104(6): 1117-1132, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30134499

RESUMO

Acetate, an agonist for the free fatty acid receptor 2 (FFA2R/GPR43), triggers an increase in the cytosolic concentration of free Ca2+ in neutrophils without any assembly of the superoxide generating NADPH-oxidase. We show that the phenylacetamide compound 58 (Cmp 58; (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide), lacking a direct activating effect on neutrophils, acts as a positive FFA2R modulator that turns acetate into a potent activating agonist that triggers an assembly of the NADPH-oxidase. The NADPH-oxidase activity could be further increased in neutrophils treated with the pro-inflammatory cytokine TNF-α. Many neutrophil chemoattractant receptors are stored in secretory organelles but no FFA2R mobilization was induced in neutrophils treated with TNF-α. The receptor selectivity was demonstrated through the inhibition of the neutrophil response induced by the combined action of acetate and Cmp 58 by the FFA2R antagonist CATPB. Receptor modulators that positively co-operate with natural FFA2R agonists and prime neutrophils in their response to such agonists, may serve as good tools for further unraveling the physiological functions of FFA2R and its involvement in various diseases. In this study, we show that neutrophils primed with a presumed allosteric FFA2R modulator produce increased amounts of reactive oxygen species when activated by receptor specific agonists.


Assuntos
Acetanilidas/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores de Superfície Celular/agonistas , Superóxidos/metabolismo , Tiazóis/farmacologia , Acetatos/farmacologia , Regulação Alostérica , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Sinalização do Cálcio , Células Cultivadas , Ciclopropanos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Neutrófilos/enzimologia , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Toxina Pertussis/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
14.
J Immunol ; 200(9): 3269-3282, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602776

RESUMO

Phagocytic neutrophils express formyl peptide receptors (FPRs; FPR1 and FPR2) that distinctly recognize peptides starting with an N-formylated methionine (fMet). This is a hallmark of bacterial metabolism; similar to prokaryotes, the starting amino acid in synthesis of mitochondrial DNA-encoded proteins is an fMet. Mitochondrial cryptic peptides (mitocryptides; MCTs) with an N-terminal fMet could be identified by our innate immune system; however, in contrast to our knowledge about bacterial metabolites, very little is known about the recognition profiles of MCTs. In this study, we determined the neutrophil-recognition profiles and functional output of putative MCTs originating from the N termini of the 13 human mitochondrial DNA-encoded proteins. Six of the thirteen MCTs potently activated neutrophils with distinct FPR-recognition profiles: MCTs from ND3 and ND6 have a receptor preference for FPR1; MCTs from the proteins ND4, ND5, and cytochrome b prefer FPR2; and MCT-COX1 is a dual FPR1/FPR2 agonist. MCTs derived from ND2 and ND4L are very weak neutrophil activators, whereas MCTs from ND1, ATP6, ATP8, COX2, and COX3, do not exert agonistic or antagonistic FPR effects. In addition, the activating MCTs heterologously desensitized IL-8R but primed the response to the platelet-activating factor receptor agonist. More importantly, our data suggest that MCTs have biased signaling properties in favor of activation of the superoxide-generating NADPH oxidase or recruitment of ß-arrestin. In summary, we identify several novel FPR-activating peptides with sequences present in the N termini of mitochondrial DNA-encoded proteins, and our data elucidate the molecular basis of neutrophil activation by MCTs.


Assuntos
DNA Mitocondrial , Proteínas Mitocondriais/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Receptores de Formil Peptídeo/imunologia , Humanos
15.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 695-708, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29477577

RESUMO

GPR84 is a recently de-orphanized member of the G-protein coupled receptor (GPCR) family recognizing medium chain fatty acids, and has been suggested to play important roles in inflammation. Due to the lack of potent and selective GPR84 ligands, the basic knowledge related to GPR84 functions is very limited. In this study, we have characterized the GPR84 activation profile and regulation mechanism in human phagocytes, using two recently developed small molecules that specifically target GPR84 agonistically (ZQ16) and antagonistically (GLPG1205), respectively. Compared to our earlier characterization of the short chain fatty acid receptor FFA2R which is functionally expressed in neutrophils but not in monocytes, GPR84 is expressed in both cell types and in monocyte-derived macrophages. In neutrophils, the GPR84 agonist had an activation profile very similar to that of FFA2R. The GPR84-mediated superoxide release was low in naïve cells, but the response could be significantly primed by TNFα and by the actin cytoskeleton disrupting agent Latrunculin A. Similar to that of FFA2R, a desensitization mechanism bypassing the actin cytoskeleton was utilized by GPR84. All ZQ16-mediated cellular responses were sensitive to GLPG1205, confirming the GPR84-dependency. Finally, our data of in vivo transmigrated tissue neutrophils indicate that both GPR84 and FFA2R are involved in neutrophil recruitment processes in vivo. In summary, we show functional similarities but also some important differences between GPR84 and FFA2R in human phagocytes, thus providing some mechanistic insights into GPR84 regulation in blood neutrophils and cells recruited to an aseptic inflammatory site in vivo.


Assuntos
Inflamação/genética , Neutrófilos/metabolismo , Receptores de Superfície Celular/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Inflamação/patologia , Ligantes , Macrófagos/metabolismo , Neutrófilos/química , Fagócitos , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/química , Receptores Acoplados a Proteínas G , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética
16.
Mol Cell Biol ; 36(20): 2583-95, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27503855

RESUMO

Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca(2+), and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R.


Assuntos
Citoesqueleto/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores de Superfície Celular/agonistas , Fator de Necrose Tumoral alfa/farmacologia , Acetatos/farmacologia , Cálcio/metabolismo , Humanos , Inflamação , Neutrófilos/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
17.
Opt Express ; 20(7): 8155-60, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453485

RESUMO

In this paper we numerically investigate nonlinear impairments in a WDM system with mixed PM (D)QPSK and OOK channels. First we analyze the dependence of XPM and XPolM on SOP and baud rate in absence of PMD. In this case we find that the nonlinear impairments are highly dependent on relative SOP between the PM (D)QPSK and neighbouring OOK channels. The dependence on relative SOP is more pronounced in differential detection than in coherent detection. However, with increasing values of PMD this dependence decreases, and non-linear tolerance improves.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Dinâmica não Linear , Espalhamento de Radiação
18.
Opt Express ; 19(10): 9453-60, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643203

RESUMO

We investigate a digital back-propagation simplification method to enable computationally-efficient digital nonlinearity compensation for a coherently-detected 112 Gb/s polarization multiplexed quadrature phase shifted keying transmission over a 1,600 km link (20 x 80 km) with no inline compensation. Through numerical simulation, we report up to 80% reduction in required back-propagation steps to perform nonlinear compensation, in comparison to the standard back-propagation algorithm. This method takes into account the correlation between adjacent symbols at a given instant using a weighted-average approach, and optimization of the position of nonlinear compensator stage to enable practical digital back-propagation.

19.
Opt Express ; 19(26): B784-9, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274103

RESUMO

An RF-assisted 112 Gbit/s transmitter based on optical phase modulation is presented. The system uses two closely spaced sub-channels generated using radio frequency (RF) electronics. Numerical simulations as well as experiments over 824 km of installed fiber are used for evaluation. The analysis shows that performance almost as good as for a conventional Mach-Zehnder modulator can be obtained. Although a relatively high OSNR is required due to the large fraction of power residing in the optical carrier, very small penalty is observed for optimum power levels in the transmission link.

20.
Opt Express ; 19(26): B805-10, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274106

RESUMO

We experimentally demonstrate performance enhancements enabled by weighted digital back propagation method for 28 Gbaud PM-16QAM transmission systems, over a 250 km ultra-large area fibre, using only one back-propagation step for the entire link, enabling up to 3 dB improvement in power tolerance with respect to linear compensation only. We observe that this is roughly the same improvement that can be obtained with the conventional, computationally heavy, non-weighted digital back propagation compensation with one step per span. As a further benchmark, we analyze performance improvement as a function of number of steps, and show that the performance improvement saturates at approximately 20 steps per span, at which a 5 dB improvement in power tolerance is obtained with respect to linear compensation only. Furthermore, we show that coarse-step self-phase modulation compensation is inefficient in wavelength division multiplexed transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...