Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003895

RESUMO

Bevacizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the management of macular edema in central retinal vein occlusion (CRVO). Studying retinal protein changes in bevacizumab intervention may provide insights into mechanisms of action. In nine Danish Landrace pigs, experimental CRVO was induced in both eyes with argon laser. The right eyes received an intravitreal injection of 0.05 mL bevacizumab (n = 9), while the left control eyes received 0.05 mL saline water (NaCl). Retinal samples were collected 15 days after induced CRVO. Label-free quantification nano-liquid chromatography-tandem mass spectrometry identified 59 proteins that were regulated following bevacizumab treatment. Following bevacizumab intervention, altered levels of bevacizumab components, including the Ig gamma-1 chain C region and the Ig kappa chain C region, were observed. Changes in other significantly regulated proteins ranged between 0.58-1.73, including for the NADH-ubiquinone oxidoreductase chain (fold change = 1.73), protein-transport protein Sec24B (fold change = 1.71), glycerol kinase (fold change = 1.61), guanine-nucleotide-binding protein G(T) subunit-gamma-T1 (fold change = 0.67), and prefoldin subunit 6 (fold change = 0.58). A high retinal concentration of bevacizumab was achieved within 15 days. Changes in the additional proteins were limited, suggesting a narrow mechanism of action.

2.
Medicina (Kaunas) ; 59(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36837445

RESUMO

Retinal vein occlusion (RVO) is a frequent visually disabling condition. The management of RVO continues to challenge clinicians. Macular edema secondary to RVO is often recurrent, and patients typically require intravitreal injections for several years. Understanding molecular mechanisms in RVO is a key element in improving the treatment of the condition. Studying the molecular mechanisms in RVO at the retinal level is possible using animal models of experimental RVO. Most studies of experimental RVO have been sporadic, using only a few animals per experiment. Here, we report on 10 years of experience of the use of argon laser-induced experimental RVO in 108 porcine eyes from 65 animals, including 65 eyes with experimental branch retinal vein occlusion (BRVO) and 43 eyes with experimental central retinal vein occlusion (CRVO). Reproducibility and methods for evaluating and controlling ischemia in experimental RVO are reviewed. Methods for studying protein changes in RVO are discussed in detail, including proteomic analysis, Western blotting, and immunohistochemistry. Experimental RVO has brought significant insights into molecular changes in RVO. Testing intravitreal interventions in experimental RVO may be a significant step in developing personalized therapeutic approaches for patients with RVO.


Assuntos
Oclusão da Veia Retiniana , Animais , Suínos , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Proteômica , Reprodutibilidade dos Testes , Retina , Lasers , Tomografia de Coerência Óptica
3.
Molecules ; 27(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080454

RESUMO

Central retinal vein occlusion (CRVO) is a visually disabling condition resulting from a thrombus in the major outflow vessel of the eye. The inflammatory response in CRVO is effectively treated with a dexamethasone (DEX) intravitreal implant. Uncovering the proteome changes following DEX implant intervention in CRVO may identify key proteins that mediate the beneficial effects of DEX. In six Göttingen minipigs, CRVO was induced in both eyes with an argon laser using a well-established experimental model. The right eyes were treated with a DEX intravitreal implant (Ozurdex, Allergan), while the left control eyes received a sham injection. Eight weeks after DEX intervention, retinal samples were collected and analyzed with tandem mass tag-based mass spectrometry. DEX implant intervention resulted in the upregulation of peptidyl-prolyl cis-trans isomerase FKBP5 (FKBP5) and ubiquilin-4. Immunohistochemistry showed expression of FKBP5 in the nuclei in all cellular layers of the retina. Cell adhesion molecule 3, tumor necrosis factor receptor superfamily member 16, and trans-1,2-dihydrobenzene-1,2-diol dehydrogenase were downregulated following DEX intervention. The upregulation of the corticosteroid-sensitive protein FKBP5 suggests that the implant remained active at the molecular level after eight weeks of treatment. Future studies may investigate if FKBP5 regulates the efficacy and duration of the DEX implant.


Assuntos
Oclusão da Veia Retiniana , Animais , Dexametasona/farmacologia , Implantes de Medicamento , Glucocorticoides/farmacologia , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/metabolismo , Suínos , Porco Miniatura , Tomografia de Coerência Óptica , Resultado do Tratamento , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...