Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36870298

RESUMO

The olfactory mucosa (OM) and olfactory bulb (OB) are neuronal tissues that contribute to the early processing of olfactory information. They contain significant amounts of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are crucial for neuronal tissue development. In this study, we evaluated the impact of feeding mice diets that are either deficient in α-linolenic acid (ALA) or supplemented with n-3 long-chain PUFAs from gestation to adolescence on the phospholipid and ganglioside composition of these tissues. Both diets modified the levels of some phospholipid classes, notably the phosphatidylserine and phosphatidylethanolamine levels. In addition, the low-ALA diet enriched n-6 PUFAs in the main phospholipid classes of both tissues, while the diet supplemented with n-3 PUFAs enhanced the n-3 PUFA-containing phospholipid species level, mainly in OM. The diets also modulated the levels and profiles of several ganglioside classes in OM and OB. These modifications may have repercussions on the olfactory sensitivity.


Assuntos
Ácidos Graxos Ômega-3 , Fosfolipídeos , Gravidez , Feminino , Camundongos , Animais , Gangliosídeos , Desmame , Dieta , Ácidos Graxos Ômega-6
2.
Sci Rep ; 11(1): 16771, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408170

RESUMO

The nasal mucosa (NM) contains olfactory mucosa which contributes to the detection of odorant molecules and the transmission of olfactory information to the brain. To date, the lipid composition of the human NM has not been adequately characterized. Using gas chromatography, liquid chromatography coupled to mass spectrometry and thin layer chromatography, we analyzed the fatty acids and the phospholipid and ceramide molecular species in adult human nasal and blood biopsies. Saturated and polyunsaturated fatty acids (PUFAs) accounted for 45% and 29% of the nasal total fatty acids, respectively. Fatty acids of the n-6 family were predominant in the PUFA subgroup. Linoleic acid and arachidonic acid (AA) were incorporated in the main nasal phospholipid classes. Correlation analysis revealed that the nasal AA level might be positively associated with olfactory deficiency. In addition, a strong positive association between the AA levels in the NM and in plasma cholesteryl esters suggested that this blood fraction might be used as an indicator of the nasal AA level. The most abundant species of ceramides and their glycosylated derivatives detected in NM contained palmitic acid and long-chain fatty acids. Overall, this study provides new insight into lipid species that potentially contribute to the maintenance of NM homeostasis and demonstrates that circulating biomarkers might be used to predict nasal fatty acid content.


Assuntos
Ácidos Graxos/metabolismo , Lipidômica , Transtornos do Olfato/metabolismo , Mucosa Olfatória/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA