Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322271

RESUMO

Encapsulated magnetic nanoparticles are of increasing interest for biomedical applications. However, up to now, it is still not possible to characterize their localized magnetic properties within the capsules. Magnetic Force Microscopy (MFM) has proved to be a suitable technique to image magnetic nanoparticles at ambient conditions revealing information about the spatial distribution and the magnetic properties of the nanoparticles simultaneously. However, MFM measurements on magnetic nanoparticles lead to falsifications of the magnetic MFM signal due to the topographic crosstalk. The origin of the topographic crosstalk in MFM has been proven to be capacitive coupling effects due to distance change between the substrate and tip measuring above the nanoparticle. In this paper, we present data fusion of the topography measurements of Atomic Force Microscopy (AFM) and the phase image of MFM measurements in combination with the theory of capacitive coupling in order to eliminate the topographic crosstalk in the phase image. This method offers a novel approach for the magnetic visualization of encapsulated magnetic nanoparticles.

2.
Beilstein J Nanotechnol ; 10: 1056-1064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165032

RESUMO

Magnetic force microscopy (MFM) has become a widely used tool for the characterization of magnetic properties. However, the magnetic signal can be overlapped by additional forces acting on the tip such as electrostatic forces. In this work the possibility to reduce capacitive coupling effects between tip and substrate is discussed in relation to the thickness of a dielectric layer introduced in the system. Single superparamagnetic iron oxide nanoparticles (SPIONs) are used as a model system, because their magnetic signal is contrariwise to the signal due to capacitive coupling so that it is possible to distinguish between magnetic and electric force contributions. Introducing a dielectric layer between substrate and nanoparticle the capacitive coupling can be tuned and minimized for thick layers. Using the theory of capacitive coupling and the magnetic point dipole-dipole model we could theoretically explain and experimentally prove the phase signal for single superparamagnetic nanoparticles as a function of the layer thickness of the dielectric layer. Tuning the capacitive coupling by variation of the dielectric layer thickness between nanoparticle and substrate allows the distinction between the electric and the magnetic contributions to the MFM signal. The theory also predicts decreasing topographic effects in MFM signals due to surface roughness of dielectric films with increasing film thickness.

3.
Chem Commun (Camb) ; 54(7): 751-754, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29308466

RESUMO

A 2D laser lithography protocol for controlled grafting of polymer brushes in a single-step is presented. A series of polyacrylates were grafted from silicon substrates via laser-induced copper-mediated radical polymerization. Film thicknesses up to 39 nm were reached within 125 µs of exposure to UV laser light (351 nm). Successful block copolymerization underpinned the controlled nature of the grafting methodology. The resolution of a small structure of grafted PHEA reached 270 µm and was limited by the type of laser used in the study. Further, a checkerboard pattern of PtBA and POEGA was produced and imaged via time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS).

4.
Macromol Rapid Commun ; 38(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28940963

RESUMO

The organocatalyzed photo-atom transfer radical polymerization (photoATRP) using 10-phenylphenothiazine as catalyst is studied toward its use in methacrylic acid (MAA) polymerization and surface grafting. The organocatalyzed photoATRP of methyl methacrylate (MMA) is first optimized for continuous flow synthesis in order to assess the livingness of the polymerization. MMA can be polymerized in batch and in flow; however, conversions are limited by the loss of bromine functionality and hence high conversions have to be traded in with increasing dispersities. Also, MAA is polymerized successfully in continuous flow with similar limitations. Flow conditions are transferred to surface grafting from silanized silicon wafers. The presence of ATRP initiators after silanization is confirmed by secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Dense polymethacrylic acid brush films are successfully produced, which is not directly accessible via classical copper-mediated ATRP techniques.


Assuntos
Luz , Polimerização , Ácidos Polimetacrílicos/química , Catálise , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...