Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 72(7): 1176-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398033

RESUMO

Managing the subsurface urban infrastructure, while facing limited budgets, is one of the main challenges wastewater utilities currently face. In this context targeted planning of inspection and maintenance measures plays a crucial role. This paper introduces a cause and effect oriented sewer degradation evaluation approach to support decisions on inspection frequencies and priorities. Therefore, the application of logistic regression models, to predict the probability of failure categories as an alternative to the prediction of sewer condition classes, was introduced. We assume that analysing the negative effects resulting from different failure categories in extension to a condition class-based planning approach offers new possibilities for targeted inspection planning. In addition, a cross validation process was described to allow for a more accurate prediction of sewer degradation. The described approach was applied to an Austrian sewer system. The results show that the failure category-based regression models perform better than the conventional condition class-oriented models. The results of the failure category predictions are presented with respect to negative effects the failure may have on the hydraulic performance of the system. Finally, suggestions are given for how this performance-oriented sewer section evaluation can support scheduled inspection planning.


Assuntos
Drenagem Sanitária , Análise de Falha de Equipamento/métodos , Modelos Teóricos , Urbanização/tendências , Áustria , Drenagem Sanitária/métodos , Drenagem Sanitária/normas , Análise de Falha de Equipamento/estatística & dados numéricos , Modelos Logísticos , Probabilidade
2.
Water Sci Technol ; 67(7): 1574-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23552247

RESUMO

The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.


Assuntos
Engenharia Sanitária/métodos , Hidrologia
3.
Water Sci Technol ; 66(5): 1052-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22797234

RESUMO

Elements of combined sewer systems are among others sub-catchments, junctions, conduits and weirs with or without storage units. The spatial distribution and attributes of all these elements influence both system characteristics and sewer performance. Until today, little work has been done to analyse the influence of such characteristics in a case unspecific approach. In this study, 250 virtual combined sewer systems are analysed by defining groups of systems, which are representative for their different characteristics. The set was created with a further development of the case study generator (CSG), a tool for automatic generation of branched sewer systems. Combined sewer overflow and flooding is evaluated using performance indicators based on hydrodynamic simulations. The analysis of system characteristics, like those presented in this paper, helps researchers to understand coherences and aids practitioners in designing combined sewers. For instance, it was found that characteristics that have a positive influence on emission reduction frequently have a negative influence on flooding avoidance and vice versa.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Engenharia Sanitária/métodos , Esgotos , Simulação por Computador , Movimentos da Água
4.
Water Sci Technol ; 65(7): 1215-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22437018

RESUMO

Sensitivity analysis (SA) evaluates the impact of changes in model parameters on model predictions. Such an analysis is commonly used when developing or applying environmental models to improve the understanding of underlying system behaviours and the impact and interactions of model parameters. The novelty of this paper is a geo-referenced visualization of sensitivity indices for model parameters in a combined sewer model using geographic information system (GIS) software. The result is a collection of maps for each analysis, where sensitivity indices (calculated for model parameters of interest) are illustrated according to a predefined symbology. In this paper, four types of maps (an uncertainty map, calibration map, vulnerability map, and design map) are created for an example case study. This article highlights the advantages and limitations of GIS-based SA of sewer models. The conclusion shows that for all analyzed applications, GIS-based SA is useful for analyzing, discussing and interpreting the model parameter sensitivity and its spatial dimension. The method can lead to a comprehensive view of the sewer system.


Assuntos
Drenagem Sanitária , Sistemas de Informação Geográfica , Modelos Teóricos , Calibragem , Incerteza
5.
Water Sci Technol ; 64(9): 1885-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22020483

RESUMO

One of the major tasks in urban water management is failure-free operation for at least most of the time. Accordingly, the reliability of the network systems in urban water management has a crucial role. The failure of a component in these systems impacts potable water distribution and urban drainage. Therefore, water distribution and urban drainage systems are categorized as critical infrastructure. Vulnerability is the degree to which a system is likely to experience harm induced by perturbation or stress. However, for risk assessment, we usually assume that events and failures are singular and independent, i.e. several simultaneous events and cascading events are unconsidered. Although failures can be causally linked, a simultaneous consideration in risk analysis is hardly considered. To close this gap, this work introduces the term cascade vulnerability for water infrastructure. Cascade vulnerability accounts for cascading and simultaneous events. Following this definition, cascade risk maps are a merger of hazard and cascade vulnerability maps. In this work cascade vulnerability maps for water distribution systems and urban drainage systems based on the 'Achilles-Approach' are introduced and discussed. It is shown, that neglecting cascading effects results in significant underestimation of risk scenarios.


Assuntos
Água Potável/análise , Cidades , Drenagem Sanitária , Geografia , Medição de Risco
6.
Water Sci Technol ; 62(5): 1090-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20818050

RESUMO

The application of artificial case studies is a well established technique in urban drainage to test measures, approaches or models. However, the preparation of a virtual case study for a sewer system is a tedious task. Several algorithms have been presented in the literature for an automatic generation of virtual sewer systems. Applying the approach of generating virtual cities by means of the software VIBe (Virtual Infrastructure Benchmarking) the urban structure (including elevation map, land use and population distribution) is generated firstly and the infrastructure is designed meeting the requirements of the urban structure. The aim of this paper is the development of an agent based approach for generating virtual sewer systems. This new algorithm functions as module of the software VIBe but can of course also be applied to a real city in order to get information on possible/optimal sewer placement. Here hundred virtual VIBe cities and for each twelve virtual sewer networks are generated and calibrated based on data of an alpine region. It is revealed that with the approach presented virtual sewer networks which are comparable with real world sewer networks can be generated. The agent based method provides data sets for benchmarking and allows case independent testing of new measures.


Assuntos
Simulação por Computador , Drenagem Sanitária , Modelos Teóricos , Software , Processos Estocásticos
7.
Water Sci Technol ; 61(9): 2273-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20418624

RESUMO

Numerical and computational modelling of flow and pollutant dynamics in urban drainage systems is becoming more and more integral to planning and design. The main aim of integrated flow and pollutant models is to quantify the efficiency of different measures at reducing the amount of pollutants discharged into receiving water bodies and minimise the consequent negative water quality impact. The open source toolbox CITY DRAIN developed in the Matlab/Simulink environment, which was designed for integrated modelling of urban drainage systems, is used in this work. The goal in this study was to implement and test computational routines for representing sediment and pollutant loads in order to evaluate catchment surface pollution. Tested models estimate the accumulation, erosion and transport of pollutants--aggregately--on urban surfaces and in sewers. The toolbox now includes mathematical formulations for accumulation of pollutants during dry weather period and their wash-off during rainfall events. The experimental data acquired in a previous research project carried out by the Environmental Engineering Research Centre (CIIA) at the Universidad de los Andes in Bogotá (Colombia) was used for the calibration of the models. Different numerical approaches were tested for their ability to calibrate to the sediment transport conditions. Initial results indicate, when there is more than one peak during the rainfall event duration, wash-off processes probably can be better represented using a model based on the flow instead of the rainfall intensity. Additionally, it was observed that using more detailed models (compared with an instantaneous approach) for representing pollutant accumulation do not necessarily lead to better results.


Assuntos
Simulação por Computador , Sedimentos Geológicos , Modelos Teóricos , Movimentos da Água , Poluentes Químicos da Água , Cidades , Colômbia , Rios , Engenharia Sanitária , Fatores de Tempo , Incerteza , Poluentes da Água , Poluição da Água/prevenção & controle
8.
Water Sci Technol ; 60(10): 2507-13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19923755

RESUMO

This article presents the development and application of the software tool VulNetUD. VulNetUD is a tool for GIS-based identification of vulnerable sites of urban drainage systems (UDS) using hydrodynamic simulations undertaken using EPA SWMM. The benefit of the tool is the output of different vulnerability maps rating sewer surcharging, sewer flooding, combined sewer overflow (CSO) efficiency and CSO emissions. For this, seven predefined performance indicators are used to evaluate urban drainage systems under abnormal, critical and future conditions. The application on a case study highlights the capability of the tool to identify weak points of the urban drainage systems. Thereby it is possible to identify urban drainage system components which cause the highest performance decrease across the entire system. The application of the method on a real world case study shows for instance that a reduction of catchment areas which are located upstream of CSOs with relatively less capacity in the downstream sewers achieves the highest increases efficiency of the system. Finally, the application of VulNetUD is seen as a valuable tool for managers and operators of waste water utilities to improve the efficiency of their systems. Additionally vulnerability maps generated by VulNetUD support risk management e.g. decision making in urban development planning or the development of rehabilitation strategies.


Assuntos
Simulação por Computador , Sistemas de Informação Geográfica , Engenharia Sanitária , Cidades , Desastres , Esgotos , Software , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
9.
Water Sci Technol ; 60(6): 1555-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19759458

RESUMO

Design and construction of urban drainage systems has to be done in a predictive way, as the average lifespan of such investments is several decades. The design engineer has to predict many influencing factors and scenarios for future development of a system (e.g. change in land use, population, water consumption and infiltration measures). Furthermore, climate change can cause increased rain intensities which leads to an additional impact on drainage systems. In this paper we compare the behaviour of different performance indicators of combined sewer systems when taking into account long-term environmental change effects (change in rainfall characteristics, change in impervious area and change in dry weather flow). By using 250 virtual case studies this approach is--in principle--a Monte Carlo Simulation in which not only parameter values are varied but the entire system structure and layout is changed in each run. Hence, results are more general and case-independent. For example the consideration of an increase of rainfall intensities by 20% has the same effect as an increase of impervious area of +40%. Such an increase of rainfall intensities could be compensated by infiltration measures in current systems which lead to a reduction of impervious area by 30%.


Assuntos
Clima , Esgotos , Agricultura , Cidades , Chuva , Incerteza , Reforma Urbana
10.
Water Sci Technol ; 59(8): 1523-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19403965

RESUMO

To simulate hydrological models of combined sewer systems an accurate calibration is indispensable. In addition to all sources of uncertainties in data collection due to the measurement methods itself, it is a key question which data has to be collected to calibrate a hydrological model, how long measurement campaigns should last and where that data has to be collected in a spatial distributed system as it is neither possible nor sensible to measure the complete system characteristics. In this paper we address this question by means of stochastic modelling. Using Monte Carlo Simulation different calibration strategies (selection of measurement sites, selection of rainfall-events) and different calibration parameters (overflow volume, number of overflows) are tested, in order to evaluate the influence on predicting the total overflow volume of the entire system. This methodology is applied in a case study with the aim to calculate the combined sewer overflow (CSO) efficiency. It can be shown that a distributed hydrological model can be calibrated sufficiently when calibration is done on 30% of all existing CSOs based on long-term observation. Event based calibration is limited possible to a limited extend when calibration events are selected carefully as wrong selection of calibration events can result in a complete failure of the calibration exercise.


Assuntos
Modelos Teóricos , Engenharia Sanitária/métodos , Movimentos da Água , Calibragem , Simulação por Computador , Método de Monte Carlo
11.
Water Sci Technol ; 59(6): 1137-43, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19342809

RESUMO

Typically, performance evaluation of new developed methodologies is based on one or more case studies. The investigation of multiple real world case studies is tedious and time consuming. Moreover extrapolating conclusions from individual investigations to a general basis is arguable and sometimes even wrong. In this article a stochastic approach is presented to evaluate new developed methodologies on a broader basis. For the approach the Matlab-tool "Case Study Generator" is developed which generates a variety of different virtual urban drainage systems automatically using boundary conditions e.g. length of urban drainage system, slope of catchment surface, etc. as input. The layout of the sewer system is based on an adapted Galton-Watson branching process. The sub catchments are allocated considering a digital terrain model. Sewer system components are designed according to standard values. In total, 10,000 different virtual case studies of urban drainage system are generated and simulated. Consequently, simulation results are evaluated using a performance indicator for surface flooding. Comparison between results of the virtual and two real world case studies indicates the promise of the method. The novelty of the approach is that it is possible to get more general conclusions in contrast to traditional evaluations with few case studies.


Assuntos
Planejamento de Cidades , Drenagem Sanitária/estatística & dados numéricos , Inundações , Processos Estocásticos
12.
Water Sci Technol ; 56(9): 29-36, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18025728

RESUMO

A traditional procedure for performance evaluation of systems is to test approaches on one or more case studies. However, it is well known that the investigation of real case studies is a tedious task. Moreover, due to the limited amount of case studies available it is not certain that all aspects of a problem can be covered in such procedure. With increasing computer power an alternative methodology has emerged, that is the investigation of a multitude of virtual case studies by means of a stochastic consideration of the overall performance. Within the frame of this approach we develop here a modular design system (MDS) for water distribution systems (WDSs). With the algorithmic application of such a MDS it is possible to create a variety of different WDSs. As an example of stochastic performance evaluation the impact of pipe breakages on WDSs is estimated applying a pressure driven performance indicator. This performance indicator is evaluated stochastically. Likewise the performance evaluation of a variety of WDSs is also performed stochastically. Cumulative distribution function, histogram and other statistical properties of 2,280x1,000 performance results of the different WDSs are calculated to highlight the applicability of the introduced stochastic approach.


Assuntos
Modelos Teóricos , Movimentos da Água , Abastecimento de Água/análise , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...