Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4550, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931681

RESUMO

CRISPR-Cas induced homology-directed repair (HDR) enables the installation of a broad range of precise genomic modifications from an exogenous donor template. However, applications of HDR in human cells are often hampered by poor efficiency, stemming from a preference for error-prone end joining pathways that yield short insertions and deletions. Here, we describe Recursive Editing, an HDR improvement strategy that selectively retargets undesired indel outcomes to create additional opportunities to produce the desired HDR allele. We introduce a software tool, named REtarget, that enables the rational design of Recursive Editing experiments. Using REtarget-designed guide RNAs in single editing reactions, Recursive Editing can simultaneously boost HDR efficiencies and reduce undesired indels. We also harness REtarget to generate databases for particularly effective Recursive Editing sites across the genome, to endogenously tag proteins, and to target pathogenic mutations. Recursive Editing constitutes an easy-to-use approach without potentially deleterious cell manipulations and little added experimental burden.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação
2.
Mol Inform ; 41(10): e2200059, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577762

RESUMO

Identifying druggable ligand-binding sites on the surface of the macromolecular targets is an important process in structure-based drug discovery. Deep-learning models have been shown to successfully predict ligand-binding sites of proteins. As a step toward predicting binding sites in RNA and RNA-protein complexes, we employ three-dimensional convolutional neural networks. We introduce a dataset splitting approach to minimize structure-related bias in training data, and investigate the influence of protein-based neural network pre-training before fine-tuning on RNA structures. Models that were pre-trained on proteins considerably outperformed the models that were trained exclusively on RNA structures. Overall, 71 % of the known RNA binding sites were correctly located within 4 Šof their true centres.


Assuntos
Redes Neurais de Computação , Proteínas , Sítios de Ligação , Ligantes , Proteínas/química , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...