Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 256: 114298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056371

RESUMO

OBJECTIVES: Hexavalent chromium (Cr(VI)) is classified as a human carcinogen. Occupational Cr(VI) exposure can occur during different work processes, but the current exposure to Cr(VI) at Swedish workplaces is unknown. METHODS: This cross-sectional study (SafeChrom) recruited non-smoking men and women from 14 companies with potential Cr(VI) exposure (n = 113) and controls from 6 companies without Cr(VI) exposure (n = 72). Inhalable Cr(VI) was measured by personal air sampling (outside of respiratory protection) in exposed workers. Total Cr was measured in urine (pre- and post-shift, density-adjusted) and red blood cells (RBC) (reflecting Cr(VI)) in exposed workers and controls. The Bayesian tool Expostats was used to assess risk and evaluate occupational exposure limit (OEL) compliance. RESULTS: The exposed workers performed processing of metal products, steel production, welding, plating, and various chemical processes. The geometric mean concentration of inhalable Cr(VI) in exposed workers was 0.15 µg/m3 (95% confidence interval: 0.11-0.21). Eight of the 113 exposed workers (7%) exceeded the Swedish OEL of 5 µg/m3, and the Bayesian analysis estimated the share of OEL exceedances up to 19.6% for stainless steel welders. Median post-shift urinary (0.60 µg/L, 5th-95th percentile 0.10-3.20) and RBC concentrations (0.73 µg/L, 0.51-2.33) of Cr were significantly higher in the exposed group compared with the controls (urinary 0.10 µg/L, 0.06-0.56 and RBC 0.53 µg/L, 0.42-0.72). Inhalable Cr(VI) correlated with urinary Cr (rS = 0.64) and RBC-Cr (rS = 0.53). Workers within steel production showed the highest concentrations of inhalable, urinary and RBC Cr. Workers with inferred non-acceptable local exhaustion ventilation showed significantly higher inhalable Cr(VI), urinary and RBC Cr concentrations compared with those with inferred acceptable ventilation. Furthermore, workers with inferred correct use of respiratory protection were exposed to significantly higher concentrations of Cr(VI) in air and had higher levels of Cr in urine and RBC than those assessed with incorrect or no use. Based on the Swedish job-exposure-matrix, approximately 17 900 workers were estimated to be occupationally exposed to Cr(VI) today. CONCLUSIONS: Our study demonstrates that some workers in Sweden are exposed to high levels of the non-threshold carcinogen Cr(VI). Employers and workers seem aware of Cr(VI) exposure, but more efficient exposure control strategies are required. National strategies aligned with the European strategies are needed in order to eliminate this cause of occupational cancer.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Masculino , Humanos , Feminino , Poluentes Ocupacionais do Ar/análise , Suécia , Estudos Transversais , Teorema de Bayes , Monitoramento Ambiental , Cromo/urina , Exposição Ocupacional/análise , Aço Inoxidável/análise , Carcinógenos
2.
Ann Work Expo Health ; 66(2): 163-177, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34486024

RESUMO

3D printing, a type of additive manufacturing (AM), is a rapidly expanding field. Some adverse health effects have been associated with exposure to printing emissions, which makes occupational exposure studies important. There is a lack of exposure studies, particularly from printing methods other than material extrusion (ME). The presented study aimed to evaluate measurement methods for exposure assessment in AM environments and to measure exposure and emissions from four different printing methods [powder bed fusion (PBF), material extrusion (ME), material jetting (MJ), and vat photopolymerization] in industry. Structured exposure diaries and volatile organic compound (VOC) sensors were used over a 5-day working week. Personal and stationary VOC samples and real-time particle measurements were taken for 1 day per facility. Personal inhalable and respirable dust samples were taken during PBF and MJ AM. The use of structured exposure diaries in combination with measurement data revealed that comparatively little time is spent on actual printing and the main exposure comes from post-processing tasks. VOC and particle instruments that log for a longer period are a useful tool as they facilitate the identification of work tasks with high emissions, highlight the importance of ventilation and give a more gathered view of variations in exposure. No alarming levels of VOCs or dust were detected during print nor post-processing in these facilities as adequate preventive measures were installed. As there are a few studies reporting negative health effects, it is still important to keep the exposure as low as reasonable.


Assuntos
Exposição Ocupacional , Compostos Orgânicos Voláteis , Poeira/análise , Humanos , Instalações Industriais e de Manufatura , Ventilação , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...