Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Hyperthermia ; 14(5): 459-77, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9789770

RESUMO

The clinical relevance of the radiofrequency regional hyperthermia (RF-RHT) as an adjuvant cancer therapy grows continuously. Simulation studies for optimization of RF-RHT based on the annular phased array systems have shown a significant improvement of power deposition patterns with increasing number of channels. However, this probably requires higher phase accuracy and amplitude stability than are provided by presently used clinical systems, e.g. BSD-2000. Measurements performed on the BSD-200 electronic revealed phase inaccuracies up to +/- 20 degrees and errors in the power registration of +/- 20 W (up to +/- 50 W in the low power range). These errors are further enhanced by the mismatching of the external load (antenna applicator) and thermal instabilities. To achieve the required phase accuracy and long-term stability in the prototype of a new amplifier system, single-sideband (SSB) mixing in combination with direct digital synthesizers (DDS), in-phase and quadrature-phase (IQ) processing and phase-lock loop (PLL) were used. In the DDS's the actual phase of the output signal of each channel is calculated in real-time. No analogue control loop is involved that may cause thermal offset or drift problems. Each DDS operates at a low intermediate frequency (IF) of 1 MHz. To transform the phase information of this IF signal into the desired RF band, SSB mixing-up is performed. A second frequency source, operating as a local oscillator (LO) in the RF band, is required for this technique. Also, the frequency adjustment of the desired RF signal is performed in the LO. These phase and frequency adjustment units are followed by the high efficiency AB-class solid state amplifier unit. The phase and power level stability of the amplifier are controlled by means of digital PLL structures in conjunction with look-up tables. For this control test signals are coupled out by means of directional couplers. The phase control is based on very sensitive phase comparison. These digital control loops are programmable and allow the implementation of different control algorithms. The achieved long-term accuracy (95% confidence interval) is +/- 1-3 W for output power levels ranging from 10-100 W, and +/- 1 degree for phase differences between each channel and a reference signal at a constant power level, and +/- 1.5 degrees for phase difference values at variable power levels between 10-100 W. In conclusion, the new amplifier system is smaller and more efficient than presently available commercial systems.


Assuntos
Hipertermia Induzida/instrumentação , Fontes de Energia Elétrica , Desenho de Equipamento , Ondas de Rádio
3.
Int J Hyperthermia ; 14(2): 183-93, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9589323

RESUMO

The manufacture of solid components with high permittivities epsilon r of 1-100 and differing conductivities sigma of 0-1.0 S/m has practical significance for fabricating applicators and phantoms in radiofrequency hyperthermia. For this purpose, various plastics (resins, polyurethane and silicone) were combined with additives (graphite and metal powder) and tested to assess their radiofrequency and mechanical characteristics and to identify manufacturing problems. Most of the plastics could be made highly dielectric and conductive by adding graphite in the range of muscle tissue (i.e. epsilon r approximately 80, sigma approximately 0.8 S/m). However, there are major differences between the materials with respect to mechanical behaviour, durability, feasibility of manufacture, and reproducibility. Manufacturing water-equivalent plastics (low conductivity sigma < 0.05 S/m and epsilon r value of 70-80) is particularly difficult. A less filled polyester resin in which concentration of brass powder can achieve an epsilon r value of up to 100 at low conductivity proved to be the only suitable medium. Such a plastic can be used for future applicator designs. Other materials of interest include plastics equivalent to lossy media (e.g. sigma = 0.45-0.55 S/m, epsilon r = 70-80), fat-equivalent plastics (polyurethane with graphite) and higher dielectric flexible plastics (silicone with brass powder).


Assuntos
Hipertermia Induzida/métodos , Condutividade Elétrica , Grafite/química , Micro-Ondas , Plásticos/química , Pós/química , Água/química
4.
J Magn Reson Imaging ; 8(1): 165-74, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9500276

RESUMO

Radiofrequency hyperthermia of deep-seated pelvic tumors requires noninvasive monitoring of temperature distributions in patients. Methods of MR thermography were reported to be a promising tool in solving this problem. However, to be truly useful for monitoring hyperthermia treatments, MR thermography should be able to cover the entire pelvis in acquisition times no longer than for a breath-hold (< or = 15 seconds) and to resolve small temperature differences (< 1 degrees C). Three methods exploiting the temperature dependence of spin-lattice relaxation time (T1), of self-diffusion coefficient (D), and of chemical shift of proton resonance frequency (PRF) were applied in phantom experiments; the pulse sequences were the T1-weighted gradient echo, the pulsed diffusion gradient spin echo made faster through the keyhole technique, and the gradient echo with the phase reconstruction, respectively. The high planar resolution was compromised, and instead, coarse and more isotropic voxels were used. Experiments were performed in two consecutive steps, thus imitating a possible scenario for monitoring hyperthermia. In the first step, calibration curves were recorded, which were then used in the second step to obtain maps of temperature changes. The results show a clear superiority of the PRF method, followed by the D and the T1 methods. The uncertainty of temperature changes predicted both from calibration curves and from maps was less than 1 degrees C only with the PRF and the D-based methods.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética/métodos , Calibragem , Meios de Contraste , Gadolínio DTPA , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Neoplasias Pélvicas/patologia , Neoplasias Pélvicas/terapia , Imagens de Fantasmas
5.
Int J Hyperthermia ; 12(4): 477-94, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8877472

RESUMO

A treatment planning program package for radiofrequency hyperthermia has been developed. It consists of software modules for processing three-dimensional computerized tomography (CT) data sets, manual segmentation, generation of tetrahedral grids, numerical calculation and optimisation of three-dimensional E field distributions using a volume surface integral equation algorithm as well as temperature distributions using an adaptive multilevel finite-elements code, and graphical tools for simultaneous representation of CT data and simulation results. Heat treatments are limited by hot spots in healthy tissues caused by E field maxima at electrical interfaces (bone/muscle). In order to reduce or avoid hot spots suitable objective functions are derived from power deposition patterns and temperature distributions, and are utilised to optimise antenna parameters (phases, amplitudes). The simulation and optimisation tools have been applied to estimate the improvements that could be reached by upgrades of the clinically used SIGMA-60 applicator (consisting of a single ring of four antenna pairs). The investigated upgrades are increased number of antennas and channels (triple-ring of 3 x 8 antennas and variation of antenna inclination. Significant improvement of index temperatures (1-2 degrees C) is achieved by upgrading the single ring to a triple ring with free phase selection for every antenna or antenna pair. Antenna amplitudes and inclinations proved as less important parameters.


Assuntos
Carcinoma/terapia , Hipertermia Induzida , Modelos Teóricos , Neoplasias Retais/terapia , Humanos , Hipertermia Induzida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...