Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 10(10): 830-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129030

RESUMO

Jasmonates are lipid-derived plant hormones that regulate plant defenses and numerous developmental processes. Although the biosynthesis and molecular function of the most active form of the hormone, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), have been unraveled, it remains poorly understood how the diversity of bioactive jasmonates regulates such a multitude of plant responses. Bioactive analogs have been used as chemical tools to interrogate the diverse and dynamic processes of jasmonate action. By contrast, small molecules impairing jasmonate functions are currently unknown. Here, we report on jarin-1 as what is to our knowledge the first small-molecule inhibitor of jasmonate responses that was identified in a chemical screen using Arabidopsis thaliana. Jarin-1 impairs the activity of JA-Ile synthetase, thereby preventing the synthesis of the active hormone, JA-Ile, whereas closely related enzymes are not affected. Thus, jarin-1 may serve as a useful chemical tool in search for missing regulatory components and further dissection of the complex jasmonate signaling networks.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas , Nucleotidiltransferases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
2.
ACS Chem Biol ; 8(1): 19-26, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23181429

RESUMO

Allostery is a fundamental regulatory mechanism that is based on a functional modulation of a site by a distant site. Allosteric regulation can be triggered by binding of diverse allosteric effectors, ranging from small molecules to macromolecules, and is therefore offering promising opportunities for functional modulation in a wide range of applications including the development of chemical probes or drug discovery. Here, we provide an overview of key classes of allosteric protease effectors, their corresponding molecular mechanisms, and their practical implications.


Assuntos
Peptídeo Hidrolases , Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Humanos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/farmacologia
3.
Chembiochem ; 13(3): 402-8, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22267294

RESUMO

Several proteases like the high temperature requirement A (HtrA) protein family containing internal or C-terminal PDZ domains play key roles in protein quality control in the cell envelope of Gram-negative bacteria. While several HtrA proteases have been extensively characterized, many features of C-terminal processing proteases such as tail-specific protease (Tsp) are still unknown. To fully understand these cellular control systems, individual domains need to be targeted by specific peptides acting as activators or inhibitors. Here, we describe the identification and design of potent inhibitors and activators of Tsp. Suitable synthetic substrates of Tsp were identified and served as a basis for the generation of boronic acid-based peptide inhibitors. In addition, a proteomic screen of E. coli cell envelope proteins using a synthetic peptide library was performed to identify peptides capable of amplifying Tsp's proteolytic activity. The implications of these findings for the regulation of PDZ proteases and for future mechanistic studies are discussed.


Assuntos
Endopeptidases/metabolismo , Domínios PDZ , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Ácidos Borônicos/química , Endopeptidases/química , Ligantes , Estrutura Molecular , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
4.
Nat Struct Mol Biol ; 18(3): 386-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297635

RESUMO

Crystal structures of active and inactive conformations of the human serine protease HTRA1 reveal that substrate binding to the active site is sufficient to stimulate proteolytic activity. HTRA1 attaches to liposomes, digests misfolded proteins into defined fragments and undergoes substrate-mediated oligomer conversion. In contrast to those of other serine proteases, the PDZ domain of HTRA1 is dispensable for activation or lipid attachment, indicative of different underlying mechanistic features.


Assuntos
Serina Endopeptidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Hidrólise , Modelos Moleculares , Domínios PDZ , Ligação Proteica , Dobramento de Proteína , Serina Endopeptidases/química
5.
Front Plant Sci ; 2: 101, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22639623

RESUMO

Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time-consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H) technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx). In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA-binding domain (encoded in the yeast strain), and the bioactive molecule part binding to its potential protein target fused to a DNA-activating domain (encoded on a cDNA expression vector). During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discuss the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA