Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(6): 2422-2427, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33011991

RESUMO

BACKGROUND: Low growth temperatures and the special light qualities of midnight sun in northern Scandinavia, have both been shown to improve eating quality of swede root bulbs. To study the combined effect of these factors on root development and sensory-related compounds, plants were grown in phytotron under different 24 h supplemental light-emitting diode (LED) light colours, at constant 15 °C, or reduced end-of-season temperature at 9 °C. RESULTS: Far-red LED (740 nm) light induced longer leaves and produced more roundly shaped bulbs, than the other light quality treatments. At constant 15 °C, supplemental light of far-red LED also produced a stronger purple crown skin colour than the other LED treatments. This difference between light quality treatments disappeared at 9 °C, as all bulb crowns developed a purple colour. There were no significant effects of LED-supplements on sugar concentrations, while the reduced temperature on average did increase concentrations of d-fructose and d-glucose. Total glucosinolate concentrations were not different among treatments, although the most abundant glucosinolate, progoitrin, on average was present in highest concentration under LEDs containing far-red light, and in lower concentration at 9 °C compared to 15 °C. CONCLUSION: The light quality of 24 h photoperiods in combination with temperature appears primarily important for growth and morphological traits in swede root bulbs. Influence of light quality and low temperature on appearance and sensory-related compounds may be utilized in marketing of root vegetables with special quality related to growth conditions of high latitude origin. © 2020 Society of Chemical Industry.


Assuntos
Brassica napus/efeitos da radiação , Glucosinolatos/análise , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Açúcares/química , Brassica napus/química , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Temperatura Baixa , Glucosinolatos/metabolismo , Humanos , Luz , Fotoperíodo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Açúcares/metabolismo , Paladar , Verduras/química , Verduras/crescimento & desenvolvimento , Verduras/metabolismo , Verduras/efeitos da radiação
2.
J Sci Food Agric ; 98(3): 1117-1123, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28732144

RESUMO

BACKGROUND: Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. RESULTS: Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. CONCLUSION: High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry.


Assuntos
Brassica napus/química , Brassica napus/efeitos da radiação , Altitude , Ácido Ascórbico/análise , Brassica napus/crescimento & desenvolvimento , Frutose/análise , Glucose/análise , Glucosinolatos/análise , Humanos , Luz , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Sacarose/análise , Enxofre/análise , Paladar , Temperatura , Verduras/química , Verduras/crescimento & desenvolvimento , Verduras/efeitos da radiação
3.
J Sci Food Agric ; 97(11): 3500-3508, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28026010

RESUMO

BACKGROUND: Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. RESULTS: Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. CONCLUSION: Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry.


Assuntos
Brassica/química , Brassica/efeitos da radiação , Paladar , Altitude , Brassica/crescimento & desenvolvimento , Cor , Conservação de Alimentos , Alemanha , Humanos , Luz , Noruega , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...