Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Interpers Violence ; 36(3-4): NP1913-1940NP, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-29429389

RESUMO

Numerous school-based prevention programs have been developed by scientists and practitioners to address sexual violence in adolescence. However, such programs struggle with two major challenges. First, the effectiveness of many well-established practitioner programs has not been rigorously evaluated. Second, effective scientific programs may be hard to implement into everyday school practice. Combining the knowledge of scientists and practitioners in a scientist-practitioner program could be a helpful compromise. The aim of the present study is to evaluate the effects of a scientist-practitioner program and a practitioner program using a cluster-randomized experimental design. Twenty-seven school classes were randomly assigned to either one of two programs or a control group. Outcome variables (knowledge, attitudes, behavior, and iatrogenic effects) were assessed at pretest, posttest, and a 6-month follow-up for 453 adolescents (55% female, Mage = 14.18). Short-term effects were found in both programs regarding general knowledge, knowledge of professional help, and victim-blaming attitudes. Long-term effects were found in both programs regarding general knowledge and knowledge of professional help and, in the practitioner program, in a reduction of victimization. No other effects were found on attitudes and behavior. No iatrogenic effects in the form of increased anxiety were found. Both the scientist-practitioner and the practitioner program show promise for the prevention of sexual violence in adolescence; in particular, the practitioner program may be a more cost-effective method.


Assuntos
Bullying , Vítimas de Crime , Delitos Sexuais , Adolescente , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Avaliação de Programas e Projetos de Saúde , Serviços de Saúde Escolar , Instituições Acadêmicas , Delitos Sexuais/prevenção & controle
2.
Violence Against Women ; 25(14): 1717-1738, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30714855

RESUMO

This study assesses the current situation concerning sexual violence against women in India and women's individual coping strategies. We conducted 15 semistructured interviews with 17- to 22-year-old Indian college students. First, results about the current situation showed threatening circumstances for women and revealed how deeply sexual violence affects women's lives. Second, to cope with sexual violence women mentioned three types of strategies, namely (a) safety, (b) avoidance, and (c) empowerment strategies. In the discussion, we suggest that women's use of safety and avoidance strategies are safety behaviors that play a key role in maintaining women's fear and societal dynamics.


Assuntos
Adaptação Psicológica , Violência de Gênero/psicologia , Delitos Sexuais/psicologia , Adolescente , Feminino , Violência de Gênero/estatística & dados numéricos , Humanos , Índia , Entrevistas como Assunto/métodos , Masculino , Pesquisa Qualitativa , Delitos Sexuais/estatística & dados numéricos , Adulto Jovem
3.
Stem Cell Reports ; 8(1): 21-29, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28041875

RESUMO

Aging is accompanied by loss of subcutaneous adipose tissue. This may be due to reduced differentiation capacity or deficiency in DNA damage repair (DDR) factors. Here we investigated the role of SNEVhPrp19/hPso4, which was implicated in DDR and senescence evasion, in adipogenic differentiation of human adipose stromal cells (hASCs). We showed that SNEV is induced during adipogenesis and localized both in the nucleus and in the cytoplasm. Knockdown of SNEV perturbed adipogenic differentiation and led to accumulation of DNA damage in hASCs upon oxidative stress. In addition, we demonstrated that SNEV is required for fat deposition in Caenorhabditis elegans. Consequently, we tested other DDR factors and found that WRN is also required for adipogenesis in both models. These results demonstrate that SNEV regulates adipogenesis in hASCs and indicate that DDR capacity in general might be a pre-requisite for this process.


Assuntos
Adipogenia/genética , Tecido Adiposo/citologia , Diferenciação Celular/genética , Enzimas Reparadoras do DNA/genética , Proteínas Nucleares/genética , Fatores de Processamento de RNA/genética , Células Estromais/citologia , Células Estromais/metabolismo , Animais , Caenorhabditis elegans , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Insulina/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Fatores de Processamento de RNA/metabolismo
4.
Aging (Albany NY) ; 4(4): 290-304, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22529335

RESUMO

Defective DNA repair is widely acknowledged to negatively impact on healthy aging, since mutations in DNA repair factors lead to accelerated and premature aging. However, the opposite, namely if improved DNA repair will also increase the life or health span is less clear, and only few studies have tested if overexpression of DNA repair factors modulates life and health span in cells or organisms. Recently, we identified and characterized SNEVhPrp19/hPso4, a protein that plays a role in DNA repair and pre-mRNA splicing, and observed a doubling of the replicative life span upon ectopic overexpression, accompanied by lower basal DNA damage and apoptosis levels as well as an increased resistance to oxidative stress. Here we find that SNEVhPrp19/hPso4 is phosphorylated at S149 in an ataxia telangiectasia mutated protein (ATM)-dependent manner in response to oxidative stress and DNA double strand break inducing agents. By overexpressing wild-type SNEVhPrp19/hPso4 and a phosphorylation-deficient point-mutant, we found that S149 phosphorylation is necessary for mediating the resistance to apoptosis upon oxidative stress and is partially necessary for elongating the cellular life span. Therefore, ATM dependent phosphorylation of SNEVhPrp19/hPso4 upon DNA damage or oxidative stress might represent a novel axis capable of modulating cellular life span.


Assuntos
Apoptose/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Estresse Oxidativo/genética , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/química , Precursores de RNA/química , Precursores de RNA/genética , Análise de Sequência de Proteína , Serina/genética , Serina/metabolismo , Proteínas Supressoras de Tumor/química
5.
Int J Cancer ; 130(7): 1544-57, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21520041

RESUMO

Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) regulates cell proliferation and survival by extracellular interaction and inactivation of the growth factor IGF-I. Beyond that, IGF-independent actions mediated by intracellular IGFBP-3 including nuclear-IGFBP-3, have also been described. We here show, using both confocal and electron microscopy and cell fractionation, that the extracellular addition of IGFBP-3 to living cells results in rapid uptake and nuclear delivery of IGFBP-3, by yet partly unknown mechanisms. IGFBP-3 is internalized through a dynamin-dependent pathway, traffics through endocytic compartments and is finally delivered into the nucleus. We observed docking of IGFBP-3 containing structures to the nuclear envelope and found IGFBP-3 containing dot-like structures to permeate the nuclear envelope. In summary, our findings establish the pathway by which this tumor suppressor protein is delivered from extracellular space to the nucleus.


Assuntos
Neoplasias Ósseas/metabolismo , Núcleo Celular/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteossarcoma/metabolismo , Transporte Proteico/fisiologia , Fracionamento Celular/métodos , Citoplasma/metabolismo , Endocitose/fisiologia , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacocinética , Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Ligação Proteica , Proteínas Recombinantes/farmacocinética , Células Tumorais Cultivadas
6.
Aging Cell ; 9(6): 1084-97, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20883526

RESUMO

To identify new genetic regulators of cellular aging and senescence, we performed genome-wide comparative RNA profiling with selected human cellular model systems, reflecting replicative senescence, stress-induced premature senescence, and distinct other forms of cellular aging. Gene expression profiles were measured, analyzed, and entered into a newly generated database referred to as the GiSAO database. Bioinformatic analysis revealed a set of new candidate genes, conserved across the majority of the cellular aging models, which were so far not associated with cellular aging, and highlighted several new pathways that potentially play a role in cellular aging. Several candidate genes obtained through this analysis have been confirmed by functional experiments, thereby validating the experimental approach. The effect of genetic deletion on chronological lifespan in yeast was assessed for 93 genes where (i) functional homologues were found in the yeast genome and (ii) the deletion strain was viable. We identified several genes whose deletion led to significant changes of chronological lifespan in yeast, featuring both lifespan shortening and lifespan extension. In conclusion, an unbiased screen across species uncovered several so far unrecognized molecular pathways for cellular aging that are conserved in evolution.


Assuntos
Senescência Celular/genética , Evolução Molecular , Regulação da Expressão Gênica , Adulto , Pré-Escolar , Bases de Dados Genéticas , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo , Saccharomyces cerevisiae/genética
7.
J Gerontol A Biol Sci Med Sci ; 65(11): 1165-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20675618

RESUMO

Tumor necrosis factor-like cytokine 1A (TL1A) is expressed in endothelial cells and contributes to T-cell activation, via an extracellular fragment TL1A(L72-L251), generated by ectodomain shedding. Fragments of TL1A, referred to as vascular endothelial growth inhibitor, were found to induce growth arrest and apoptosis in endothelial cells; however, the underlying mechanisms remained obscure. Here, we show that full-length TL1A is the major detectable gene product in both human umbilical vein endothelial cells and circulating endothelial progenitor cells. TL1A expression was significantly enhanced in senescent circulating endothelial progenitor cells, and knockdown of TL1A partially reverted senescence. TL1A overexpression induced premature senescence in both circulating endothelial progenitor cells and human umbilical vein endothelial cells. We also identified a novel extracellular fragment of TL1A, TL1A(V84-L251), resulting from differential ectodomain shedding, which induced growth arrest and apoptosis in human umbilical vein endothelial cells. These findings suggest that TL1A is involved in the regulation of endothelial cell senescence, via a novel fragment produced by differential ectodomain shedding.


Assuntos
Senescência Celular/fisiologia , Células Endoteliais/fisiologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Dipeptídeos/farmacologia , Eletroporação/métodos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Escherichia coli , Humanos , Ácidos Hidroxâmicos/farmacologia , Isoformas de Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , beta-Galactosidase/metabolismo
8.
Aging Cell ; 9(2): 291-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089119

RESUMO

Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non-coding miRNAs are potent post-transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age-related and senescence-related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8(+) T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8(+) T cell populations from old and young donors. Using locked nucleic acid-based miRNA microarrays, we identified four commonly regulated miRNAs, miR-17 down-regulated in all seven; miR-19b and miR-20a, down-regulated in six models; and miR-106a down-regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans.


Assuntos
Envelhecimento , Regulação para Baixo , MicroRNAs/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
9.
Aging (Albany NY) ; 1(7): 622-36, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20157544

RESUMO

Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/genética , Apoptose/genética , Proliferação de Células , Tamanho Celular , Cruzamentos Genéticos , DNA Circular/genética , DNA Circular/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Proteínas Mitocondriais/genética , Mutação/genética , Oxidantes/farmacologia , Estresse Oxidativo/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , terc-Butil Hidroperóxido/farmacologia
10.
Rejuvenation Res ; 11(2): 449-53, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18171112

RESUMO

Whereas insulin-like growth factor binding protein-3 (IGFBP-3) is frequently upregulated in senescent replicatively exhausted human umbilical vein endothelial cells (HUVEC), a systematic analysis of four different HUVEC donors revealed that IGFBP-3 is not consistently upregulated in all isolates at senescence. Lentiviral overexpression of IGFBP-3 inhibited cell proliferation, induced apoptosis and senescence in young HUVEC. Knockdown of IGFBP-3 in senescent HUVEC by lentivirally expressed shRNA did not revert but rather enforced senescence-associated beta-galactosidase staining and apoptosis. Together the data suggest that, although IGFBP-3 acts as an anti-proliferative and premature senescence-inducing protein, the role of IGFBP-3 on senescence depends on the genetic background of the donor, and additional factors might be important to maintain the senescent phenotype.


Assuntos
Senescência Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Western Blotting , Proliferação de Células , Humanos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...