Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916295

RESUMO

The performance of artificial nerve guidance conduits (NGC) in peripheral nerve regeneration can be improved by providing structures with multiple small channels instead of a single wide lumen. 3D-printing is a strategy to access such multi-channeled structures in a defined and reproducible way. This study explores extrusion-based 3D-printing of two-component hydrogels from a single cartridge printhead into multi-channeled structures under aseptic conditions. The gels are based on a platform of synthetic, anhydride-containing oligomers for cross-linking of gelatinous peptides. Stable constructs with continuous small channels and a variety of footprints and sizes were successfully generated from formulations containing either an organic or inorganic gelation base. The adjustability of the system was investigated by varying the cross-linking oligomer and substituting the gelation bases controlling the cross-linking kinetics. Formulations with organic N­methyl-piperidin-3-ol and inorganic K2HPO4 yielded hydrogels with comparable properties after manual processing and extrusion-based 3D-printing. The slower reaction kinetics of formulations with K2HPO4 can be beneficial for extending the time frame for printing. The two-component hydrogels displayed both slow hydrolytic and activity-dependent enzymatic degradability. Together with satisfying in vitro cell proliferation data, these results indicate the suitability of our cross-linked hydrogels as multi-channeled NGC for enhanced peripheral nerve regeneration.

2.
Acta Biomater ; 51: 148-160, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069495

RESUMO

The concept of macromers allows for a broad adjustment of biomaterial properties by macromer chemistry or copolymerization. Copolymerization strategies can also be used to introduce reactive sites for subsequent surface modification. Control over surface features enables adjustment of cellular reactions with regard to site and object of implantation. We designed macromer-derived polymer films which function as non-implantable analytical substrates for the investigation of surface properties of equally composed scaffolds for bone tissue engineering. To this end, a toolbox of nine different biodegradable, three-armed macromers was thermally cross-copolymerized with poly(ethylene glycol)-methacrylate (PEG-MA) to films. Subsequent activation of PEG-hydroxyl groups with succinic anhydride and N-hydroxysuccinimid allowed for covalent surface modification. We quantified the capacity to immobilize analytes of low (amino-functionalized fluorescent dye, Fcad, and RGD-peptides) and high (alkaline phosphatase, ALP) molecular weight. Fcad grafting level was controlled by macromer chemistry, content and molecular weight of PEG-MA, but also the solvent used for film synthesis. Fcad molar amount per surface area was twentyfive times higher on high-swelling compared to low-swelling films, but differences became smaller when large ALP (appr. 2:1) were employed. Similarly, small differences were observed on RGD peptide functionalized films that were investigated by cell adhesion studies. Presentation of PEG-derivatives on surfaces was visualized by atomic force microscopy (AFM) which unraveled composition-dependent domain formation influencing fluorescent dye immobilization. Surface wetting characteristics were investigated via static water contact angle. We conclude that macromer ethoxylation and lactic acid content determined film swelling, PEG domain formation and eventually efficiency of surface decoration. STATEMENT OF SIGNIFICANCE: Surfaces of implantable biomaterials are the site of interaction with a host tissue. Accordingly, modifications in the composition of the surface will determine cellular response towards the material which is crucial for the success of innovations and control of tissue regeneration. We employed a macromer approach which is most flexible for the design of biomaterials with a broad spectrum of physicochemical characteristics. For ideal analytical accessibility of the material platform, we cross-copolymerized films on solid supports. Films allowed for the covalent immobilization of fluorescent labels, peptides and enzymes and thorough analytical characterization revealed that macromer hydrophilicity is the most relevant design parameter for surface analyte presentation in these materials. All analytical results were combined in a model describing PEG linker domain formation and ligand presentation.


Assuntos
Materiais Biocompatíveis/farmacologia , Polimerização , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis/química , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Enzimas Imobilizadas/metabolismo , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos , Microscopia de Força Atômica , Oligopeptídeos/farmacologia , Polietilenoglicóis , Polímeros/química , Solventes/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Propriedades de Superfície
3.
Biomaterials ; 53: 426-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890740

RESUMO

In this study, the intra-articular tolerability and suitability for local and sustained release of an in situ forming gel composed of an acetyl-capped poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) copolymer loaded with celecoxib was investigated in horse joints. The systems were loaded with two dosages of celecoxib, 50 mg/g ('low CLB gel') and 260 mg/g ('high CLB gel'). Subsequently, they were injected into the joints of five healthy horses. For 72 h after intra-articular injection, they induced a transient inflammatory response, which was also observed after application of Hyonate(®), a commercial formulation containing hyaluronic acid for the intra-articular treatment of synovitis in horses. However, only after administration of the 'high CLB gel' the horses showed signs of discomfort (lameness score: 1.6 ± 1.3 on a 5-point scale) 1 day after injection, which completely disappeared 3 days after injection. Importantly, there was no indication of cartilage damage. Celecoxib Cmax in the joints was reached at 8 h and 24 h after administration of the 'low CLB gel' and 'high CLB gel', respectively. In the joints, concentrations of celecoxib were detected 4 weeks post administration. Celecoxib was also detected in plasma at concentrations of 150 ng/ml at day 3 post administration and thereafter its concentration dropped below the detection limit. These results show that the systems were well tolerated after intra-articular administration and showed local and sustained release of celecoxib for 4 weeks with low and short systemic exposure to the drug, demonstrating that these injectable in situ forming hydrogels are promising vehicles for intra-articular drug delivery.


Assuntos
Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Articulações/metabolismo , Poliésteres/química , Polietilenoglicóis/química , Acetilação , Animais , Celecoxib/farmacocinética , Inibidores de Ciclo-Oxigenase 2/farmacocinética , Portadores de Fármacos , Géis , Cavalos , Espectroscopia de Prótons por Ressonância Magnética , Líquido Sinovial/metabolismo , Difração de Raios X
4.
Biomaterials ; 35(27): 7919-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24952978

RESUMO

In this study, we investigated the in vitro and in vivo properties and performance of a celecoxib-loaded hydrogel based on a fully acetyl-capped PCLA-PEG-PCLA triblock copolymer. Blends of different compositions of celocoxib, a drug used for pain management in osteoarthritis, and the acetyl-capped PCLA-PEG-PCLA triblock copolymer were mixed with buffer to yield temperature-responsive gelling systems. These systems containing up to 50 mg celecoxib/g gel, were sols at room temperature and converted into immobile gels at 37 °C. In vitro, release of celecoxib started after a ∼10-day lag phase followed by a sustained release of ∼90 days. The release was proven to be mediated by polymer dissolution from the gels. In vivo (subcutaneous injection in rats) experiments showed an initial celecoxib release of ∼30% during the first 3 days followed by a sustained release of celecoxib for 4-8 weeks. The absence of a lag phase and the faster release seen in vivo were likely due to the enhanced celecoxib solubility in biological fluids and active degradation of the gel by macrophages. Finally, intra-articular biocompatibility of the 50 mg/g celecoxib-loaded gel was demonstrated using µCT-scanning and histology, where no cartilage or bone changes were observed following injection into the knee joints of healthy rats. In conclusion, this study shows that celecoxib-loaded acetyl-capped PCLA-PEG-PCLA hydrogels form a safe drug delivery platform for sustained intra-articular release.


Assuntos
Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Géis/química , Articulação do Joelho/efeitos dos fármacos , Poliésteres/química , Polietilenoglicóis/química , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Temperatura , Acetilação , Animais , Varredura Diferencial de Calorimetria , Celecoxib , Cromatografia em Gel , Articulação do Joelho/fisiologia , Masculino , Transição de Fase , Espectroscopia de Prótons por Ressonância Magnética , Pirazóis/química , Pirazóis/farmacocinética , Ratos Wistar , Reologia , Sulfonamidas/química , Sulfonamidas/farmacocinética
5.
Biomacromolecules ; 14(9): 3172-82, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23875877

RESUMO

In this study, the ability to modulate the rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) triblock copolymers was investigated. Eight polymers with varying molecular weight of PCLA, caproyl/lactoyl ratio (CL/LA) and capped with either acetyl- or propionyl-groups were synthesized by ring-opening polymerization of L-lactide and ε-caprolactone in toluene using PEG as initiator and tin(II) 2-ethylhexanoate as catalyst, and subsequently reacted in solution with an excess of acyl chloride to yield fully acyl-capped PCLA-PEG-PCLA. The microstructure of the polymers was determined by (1)H NMR, and the thermal properties and crystallinity of the polymers in dry state and in 25 wt % aqueous systems were studied by differential scanning calorimetry and X-ray diffraction. Rheological and degradation/dissolution properties of aqueous systems composed of the polymers in 25 wt % aqueous systems were studied. (1)H NMR analysis revealed that the monomer sequence in the PCLA blocks was not fully random, resulting in relatively long CL sequences, even though transesterification was demonstrated by the enrichment with lactoyl units and the presence of PEG-OH end groups. Except the most hydrophilic polymer composed of acetyl-capped PCLA1400-PEG1500-PCLA1400 having a CL/LA molar ratio of 2.5, the polymers at 25 wt % in buffer were sols below room temperature and transformed into gels between room temperature and 37 °C, which makes them suitable as temperature-responsive gelling systems for drug delivery. Over a period of weeks at 37 °C, the systems containing polymers with long CL sequences (~8 CL) and propionyl end-groups became semicrystalline as shown by X-ray diffraction analysis. Degradation of the gels by dissolution at 37 °C took 100-150 days for the amorphous gels and 250-300 days for the semicrystalline gels. In conclusion, this study shows that changes in the polymer composition allow an easy but significant modulation of rheological and degradation properties.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Polietilenoglicóis/química , Varredura Diferencial de Calorimetria , Cristalização , Cristalografia por Raios X , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Polimerização , Reologia , Temperatura , Temperatura de Transição , Viscosidade , Molhabilidade
6.
Biomaterials ; 34(32): 8002-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23891396

RESUMO

Sustained intra-articular drug delivery opens up new opportunities for targeted treatment of osteoarthritis. In this study, we investigated the in vitro and in vivo properties and performance of a newly developed hydrogel based on acyl-capped PCLA-PEG-PCLA specifically designed for intra-articular use. The hydrogel formulation consisted of a blend of polymers either capped with acetyl, or with 2-(2',3',5',-triiodobenzoyl, TIB) moieties. TIB was added to visualize the gel using µCT, enabling longitudinal quantification of its degradation. Blends containing TIB-capped polymer degraded in vitro (37 °C; pH 7.4 buffer) through dissolution over a period of ~20 weeks, and degraded slightly faster (~12 weeks) after subcutaneous injection in rats. This in vivo acceleration was likely due to active (enzymatic) degradation, shown by changes in polymer composition and molecular weight as well as the presence of macrophages. After intra-articular administration in rats, the visualized gel gradually lost signal intensity over the course of 4 weeks. Good cytocompatibility of acetyl-capped polymer based hydrogel was proven in vitro on erythrocytes and chondrocytes. Moreover, intra-articular biocompatibility was demonstrated using µCT-imaging and histology, since both techniques showed no changes in cartilage quality and/or quantity.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Condrócitos/efeitos dos fármacos , Cavalos , Concentração de Íons de Hidrogênio , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
7.
Acta Biomater ; 8(12): 4260-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22877819

RESUMO

In this study, the ability to modulate rheological and degradation properties of temperature-responsive gelling systems composed of aqueous blends of poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) triblock copolymers (i.e. uncapped) and their fully capped derivatives was investigated. Uncapped and capped PCLA-PEG-PCLA triblock copolymers, abbreviated as degree of modification 0 and 2 (DM0 and DM2, respectively), were composed of identical PCLA and PEG blocks but different end groups: namely hydroxyl and hexanoyl end groups. DM0 was synthesized by ring opening polymerization of l-lactide and ε-caprolactone in toluene using PEG as initiator and tin(II) 2-ethylhexanoate as the catalyst. A portion of DM0 was subsequently reacted with an excess of hexanoyl chloride in solution to yield DM2. The cloud point and phase behaviour of DM0 and DM2 in buffer as well as that of their blends were determined by light scattering in a diluted state and by vial tilting and rheological measurements in a concentrated state. Degradation/dissolution properties of temperature-responsive gelling systems were studied in vitro at pH 7.4 and 37°C. The cloud points of DM0/DM2 blends were ratio-dependent and could be tailored from 15 to 40°C for blends containing 15 to 100wt.% DM0. Vial tilting and rheological experiments showed that, with solid contents between 20 and 30wt.%, DM0/DM2 blends (15/85 to 25/75w/w) had a sol-to-gel transition temperature at 10-20°C, whereas blends with less than 15wt.% DM0 formed gels below 4°C and the ones with more than 25wt.% DM0 did not show a sol-to-gel transition up to 50°C. Complete degradation of temperature-responsive gelling systems took ∼100days, independent of the DM0 fraction and the initial solid content. Analysis of residual gels in time by GPC and (1)H-NMR showed no chemical polymer degradation, but indicated gel degradation by dissolution. Preferential dissolution of lactoyl-rich polymers induced enrichment of the residual gels in caproyl-rich polymers. To the best of our knowledge, degradation of temperature-responsive gelling systems by dissolution has not been reported or hypothesized as being the consequence of acylation of polymers. In conclusion, blending of PCLA-PEG-PCLA triblock polymers composed of identical backbones but different end groups provides for a straightforward preparation of temperature-responsive gelling systems with well-characterized rheological properties and potential in drug delivery. Furthermore, acylation of triblock copolymers may allow for the design of bioerodible systems with control over degradation by polymer dissolution.


Assuntos
Teste de Materiais , Poliésteres/química , Polietilenoglicóis/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Transição de Fase , Pirenzepina/análogos & derivados , Pirenzepina/química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...