Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1149307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113228

RESUMO

Phyllosphere microbiota represents a substantial but hardly explored reservoir for disease resistance mechanisms. The goal of our study was to understand the link between grapevine cultivars susceptibility to Plasmopara viticola, one of the most devastating leaf pathogens in viticulture, and the phyllosphere microbiota. Therefore, we analyzed a 16S rRNA gene library for the dominant phyllosphere bacterial phyla Alphaproteobacteria of seven Vitis genotypes at different developmental stages, i.e., flowering and harvesting, via amplicon sequencing. Young leaves had significantly higher Alphaproteobacterial richness and diversity without significant host-specificity. In contrast, the microbial communities of mature leaves were structurally distinct in accordance with P. viticola resistance levels. This statistically significant link between mature bacterial phyllosphere communities and resistant phenotypes was corroborated by beta diversity metrics and network analysis. Beyond direct host-driven effects via the provision of microhabitats, we found evidence that plants recruit for specific bacterial taxa that were likely playing a fundamental role in mediating microbe-microbe interactions and structuring clusters within mature communities. Our results on grape-microbiota interaction provide insights for targeted biocontrol and breeding strategies.

2.
Sci Rep ; 12(1): 18084, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302925

RESUMO

Hexokinase 2 (Hxk2) of Saccharomyces cerevisiae is a dual function hexokinase, acting as a glycolytic enzyme and being involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by phosphorylation of Hxk2 at serine 15, which has been attributed to the protein kinase Tda1. To explore the role of Tda1 beyond Hxk2 phosphorylation, the proteomic consequences of TDA1 deficiency were investigated by difference gel electrophoresis (2D-DIGE) comparing a wild type and a Δtda1 deletion mutant. To additionally address possible consequences of glucose repression/derepression, both were grown at 2% and 0.1% (w/v) glucose. A total of eight protein spots exhibiting a minimum twofold enhanced or reduced fluorescence upon TDA1 deficiency was detected and identified by mass spectrometry. Among the spot identities are-besides the expected Hxk2-two proteoforms of hexokinase 1 (Hxk1). Targeted proteomics analyses in conjunction with 2D-DIGE demonstrated that TDA1 is indispensable for Hxk2 and Hxk1 phosphorylation at serine 15. Thirty-six glucose-concentration-dependent protein spots were identified. A simple method to improve spot quantification, approximating spots as rotationally symmetric solids, is presented along with new data on the quantities of Hxk1 and Hxk2 and their serine 15 phosphorylated forms at high and low glucose growth conditions. The Δtda1 deletion mutant exhibited no altered growth under high or low glucose conditions or on alternative carbon sources. Also, invertase activity, serving as a reporter for glucose derepression, was not significantly altered. Instead, an involvement of Tda1 in oxidative stress response is suggested.


Assuntos
Hexoquinase , Proteínas Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteômica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
3.
Microb Biotechnol ; 15(9): 2379-2390, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593114

RESUMO

Seed microbiota influence germination and plant health and have the potential to improve crop performance, but the factors that determine their structure and functions are still not fully understood. Here, we analysed the impact of plant-related and external factors on seed endophyte communities of 10 different oilseed rape (Brassica napus L.) cultivars from 26 field sites across Europe. All seed lots harboured a high abundance and diversity of endophytes, which were dominated by six genera: Ralstonia, Serratia, Enterobacter, Pseudomonas, Pantoea, and Sphingomonas. The cultivar was the main factor explaining the variations in bacterial diversity, abundance and composition. In addition, the latter was significantly influenced by diverse biotic and abiotic factors, for example host germination rates and disease resistance against Plasmodiophora brassicae. A set of bacterial biomarkers was identified to discriminate between characteristics of the seeds, for example Sphingomonas for improved germination and Brevundimonas for disease resistance. Application of a Bayesian community approach suggested vertical transmission of seed endophytes, where the paternal parent plays a major role and might even determine the germination performance of the offspring. This study contributes to the understanding of seed microbiome assembly and underlines the potential of the microbiome to be implemented in crop breeding and biocontrol programmes.


Assuntos
Brassica napus , Microbiota , Bactérias/genética , Teorema de Bayes , Resistência à Doença , Endófitos/genética , Melhoramento Vegetal , Sementes/microbiologia
4.
Environ Microbiome ; 17(1): 10, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256002

RESUMO

BACKGROUND: A detailed understanding of antimicrobial resistance trends among all human-related environments is key to combat global health threats. In food science, however, the resistome is still little considered. Here, we studied the apple microbiome and resistome from different cultivars (Royal Gala and Braeburn) and sources (freshly harvested in South Africa and exported apples in Austrian supermarkets) by metagenomic approaches, genome reconstruction and isolate sequencing. RESULTS: All fruits harbor an indigenous, versatile resistome composed of 132 antimicrobial resistance genes (ARGs) encoding for 19 different antibiotic classes. ARGs are partially of clinical relevance and plasmid-encoded; however, their abundance within the metagenomes is very low (≤ 0.03%). Post-harvest, after intercontinental transport, the apple microbiome and resistome was significantly changed independently of the cultivar. In comparison to fresh apples, the post-harvest microbiome is characterized by higher abundance of Enterobacteriales, and a more diversified pool of ARGs, especially associated with multidrug resistance, as well as quinolone, rifampicin, fosfomycin and aminoglycoside resistance. The association of ARGs with metagenome-assembled genomes (MAGs) suggests resistance interconnectivity within the microbiome. Bacterial isolates of the phyla Gammaproteobacteria, Alphaproteobacteria and Actinobacteria served as representatives actively possessing multidrug resistance and ARGs were confirmed by genome sequencing. CONCLUSION: Our results revealed intrinsic and potentially acquired antimicrobial resistance in apples and strengthen the argument that all plant microbiomes harbor diverse resistance features. Although the apple resistome appears comparatively inconspicuous, we identified storage and transport as potential risk parameters to distribute AMR globally and highlight the need for surveillance of resistance emergence along complex food chains.

5.
J Hazard Mater ; 422: 126836, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403940

RESUMO

Multi-species biofilms are more resistant against stress compared to single-species biofilms. However, the mechanisms underlying this common observation remain elusive. Therefore, we studied biofilm formation of well-known opportunistic pathogens (Acinetobacter baumanii, Enterococcus faecium, Escherichia coli, Staphylococcus haemolyticus and Stenotrophomonas maltophilia) in various approaches. Synergistic effects in their multi-species biofilms were observed. Using metatranscriptomics, changes in the gene expression of the involved members became evident, and provided explanations for the improved survivability under nutrient limitation and exposure to disinfectants. Genes encoding proteins for vitamin B6 synthesis and iron uptake were linked to synergism in the multi-species biofilm under nutrient-limited conditions. Our study indicates that sub-lethal concentrations of an alcohol-based disinfectant enhance biofilm yields in multi-species assemblages. A reduction of the dominant taxa in the multi-species biofilm under disinfectant pressure allowed minor taxa to bloom. The findings underline the importance of minor but antimicrobial-resistant species that serve as "protectors" for the whole assemblage due to upregulation of genes involved in defence mechanisms and biofilm formation. This ultimately results in an increase in the total yield of the multi-species biofilm. We conclude that inter-species interactions may be crucial for the survival of opportunistic pathogens; especially under conditions that are typically found under hospital settings.


Assuntos
Desinfetantes , Stenotrophomonas maltophilia , Biofilmes
6.
Front Plant Sci ; 12: 642027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897731

RESUMO

Recently, it was shown that long-term plant breeding does not only shape plant characteristics but also impacts plant-associated microbiota substantially. This requires a microbiome-integrative breeding approach, which was not yet shown. Here we investigate this for the Styrian oil pumpkin (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) by analyzing the microbiome of six genotypes (the complete pedigree of a three-way cross-hybrid, consisting of three inbred lines and one open pollinating cultivar) in the seed and rhizosphere as well as the progeny seeds. Using high-throughput amplicon sequencing targeting the 16S rRNA and the ITS1 genes, the bacterial and fungal microbiomes were accessed. Seeds were found to generally carry a significantly lower microbial diversity compared to the rhizosphere and soil as well as a different microbial composition, with an especially high fraction of Enterobacteriaceae (40-83%). Additionally, potential plant-beneficial bacterial taxa, including Bacillaceae, Burkholderiaceae, and Pseudomonadaceae, were found to be enriched in progeny seeds. Between genotypes, more substantial changes can be observed for seed microbiomes compared to the rhizosphere. Moreover, rhizosphere communities were assembled for the most part from soil. Interestingly, bacterial signatures are mainly linked from seed to seed, while fungal communities are shaped by the soil and rhizosphere. Our findings provide a deep look into the rhizosphere and seed microbiome assembly of pumpkin-associated communities and represent the first steps into microbiome-driven breeding for plant-beneficial microbes.

7.
Adv Mater ; 33(9): e2007982, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33470493

RESUMO

Nature will always be an endless source of bioinspiration for man-made smart materials and multifunctional devices. Impressively, even cutoff leaves from resurrection plants can autonomously and reproducibly change their shape upon humidity changes, which goes along with total recovery of their mechanical properties after being completely dried. In this work, simple bilayers are presented as autonomously moving, humidity-triggered bending actuators. The bilayers-showing reproducible bending behavior with reversible kinematics and multiway behavior-are studied in terms of their mechanical behavior upon humidity changes. The active layer consists of a highly conducting polymer film based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with poly(dimethylsiloxane) (PDMS) as passive layer. The response to humidity is explored with dynamic mechanical thermal analysis and quartz crystal microbalance measurements. Introduction of a composite beam model allows to predict the curvature of the actuators with input from the rheological measurements. It is clearly demonstrated that volumetric strain and Young's modulus, both heavily influenced by the water uptake, dominate the bending behavior and therefore the curvature of the actuators. This loop of rheological characterization coupled with an analytical model allows to predict curvatures of in principle any complex geometry and material combination for moving parts in soft robotics.

8.
Microorganisms ; 8(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007821

RESUMO

The targeted application of plant growth-promoting rhizobacteria (PGPR) provides the key for a future sustainable agriculture with reduced pesticide application. PGPR interaction with the indigenous microbiota is poorly understood, but essential to develop reliable applications. Therefore, Stenotrophomonas rhizophila SPA-P69 was applied as a seed coating and in combination with a fungicide based on the active ingredients fludioxonil, metalaxyl-M, captan and ziram. The plant performances and rhizosphere compositions of treated and non-treated maize plants of two field trials were analyzed. Plant health was significantly increased by treatment; however, overall corn yield was not changed. By applying high-throughput amplicon sequencing of the 16S rRNA and the ITS genes, the bacterial and fungal changes in the rhizosphere due to different treatments were determined. Despite the fact that treatments had a significant impact on the rhizosphere microbiota (9-12%), the field site was identified as the main driver (27-37%). The soil microbiota composition from each site was significantly different, which explains the site-specific effects. In this study we were able to show the first indications how PGPR treatments increase plant health via microbiome shifts in a site-specific manner. This way, first steps towards a detailed understanding of PGPRs and developments of consistently efficient applications in diverse environments are made.

9.
Front Plant Sci ; 11: 560869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101330

RESUMO

The rhizosphere microbiome is crucial for plant health, especially for preventing roots from being infected by soil-borne pathogens. Microbiota-mediated pathogen response in the soil-root interface may hold the key for microbiome-based control strategies of phytopathogens. We studied the pathosystem sugar beet-late sugar beet root rot caused by Rhizoctonia solani in an integrative design of combining in vitro and in vivo (greenhouse and field) trials. We used five different cultivars originating from two propagation sites (France, Italy) with different degrees of susceptibility towards R. solani (two susceptible, one moderately tolerant and two cultivars with partial resistance). Analyzing bacterial communities in seeds and roots grown under different conditions by 16S rRNA amplicon sequencing, we found site-, cultivar-, and microhabitat-specific amplicon sequences variants (ASV) as well as a seed core microbiome shared between all sugar beet cultivars (121 ASVs representing 80%-91% relative abundance). In general, cultivar-specific differences in the bacterial communities were more pronounced in seeds than in roots. Seeds of Rhizoctonia-tolerant cultivars contain a higher relative abundance of the genera Paenibacillus, Kosakonia, and Enterobacter, while Gaiellales, Rhizobiales, and Kosakonia were enhanced in responsive rhizospheres. These results indicate a correlation between bacterial seed endophytes and Rhizoctonia-tolerant cultivars. Root communities are mainly substrate-derived but also comprise taxa exclusively derived from seeds. Interestingly, the signature of Pseudomonas poae Re*1-1-14, a well-studied sugar-beet specific biocontrol agent, was frequently found and in higher relative abundances in Rhizoctonia-tolerant than in susceptible cultivars. For microbiome management, we introduced microbial inoculants (consortia) and microbiome transplants (vermicompost) in greenhouse and field trials; both can modulate the rhizosphere and mediate tolerance towards late sugar beet root rot. Both, seeds and soil, provide specific beneficial bacteria for rhizosphere assembly and microbiota-mediated pathogen tolerance. This can be translated into microbiome management strategies for plant and ecosystem health.

10.
Front Microbiol ; 11: 1052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523580

RESUMO

Healthy soil microbiomes are crucial for achieving high productivity in combination with crop quality, but our understanding of microbial diversity is still limited. In a large-scale study including 116 composite samples from vineyards, orchards and other crops from all over Styria (south-east Austria), agricultural management as well as distinct soil parameters were identified as drivers of the indigenous microbial communities in agricultural soils. The analysis of the soil microbiota based on microbial profiling of prokaryotic 16S rRNA gene fragments and fungal ITS regions revealed high bacterial and fungal diversity within Styrian agricultural soils; 206,596 prokaryotic and 53,710 fungal OTUs. Vineyards revealed a significantly higher diversity and distinct composition of soil fungi over orchards and other agricultural soils, whereas the prokaryotic diversity was unaffected. Soil pH was identified as one of the most important edaphic modulators of microbial community structure in both, vineyard and orchard soils. In general, the acid-base balance, disorders in the soil sorption complex, content and quality of organic substance as well as individual nutrients were identified as important drivers of the microbial community structure of Styrian vineyard and orchard soils. However, responses to distinct parameters differed in orchards and vineyards, and prokaryotic and fungal community responded differently to the same abiotic factor. In comparison to orchards, the microbiome of vineyard soils maintained a higher stability when herbicides were applied. Orchard soils exhibited drastic shifts within community composition; herbicides seem to have a substantial impact on the bacterial order Chthoniobacterales as well as potential plant growth promoters and antagonists of phytopathogens (Flavobacterium, Monographella), with a decreased abundance in herbicide-treated soils. Moreover, soils of herbicide-treated orchards revealed a significantly higher presence of potential apple pathogenic fungi (Nectria, Thelonectria). These findings provide the basis to adapt soil management practices in the future in order to maintain a healthy microbiome in agricultural soils.

11.
Front Microbiol ; 11: 427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256478

RESUMO

Microalgae, a diverse group of single-celled organisms exhibiting versatile traits, find broad applications in industry. However, high production costs require further efforts to optimize their production and to enhance biomass yields. In the present study, co-occurrence of algae and methylobacteria was observed when naturally occurring microalgae biofilms were subjected to 16S rRNA gene fragment amplicon sequencing. This bacterial group is so far less explored than other microalgae-associated bacteria in terms of mutualistic relationships that might be exploitable for biotechnological applications. In order to assess the potential of four plant growth-promoting strains from the genus Methylobacterium for increased algae biomass production, co-cultivation experiments were conducted with three industrially relevant microalgae (Chlorella vulgaris, Scenedesmus vacuolatus, and Haematococcus lacustris). For S. vacuolatus and H. lacustris, a significant increase in algal biomass formation of 1.3-fold to up to 14-fold was observed after 7 days of co-incubation. Visualization of mixed cultures using confocal laser scanning microscopy revealed a high abundance of methylobacteria in the phycosphere of H. lacustris and S. vacuolatus, visually attached to the algae's surface forming a biofilm-like assemblage. Genome analyses revealed that features attributable to enhanced algal growth include genes involved in the synthesis of vitamins, siderophores and plant hormones. Our results provide evidence for the constructability of novel symbiotic algae-bacteria relationships with inter-kingdom supportive capacities, underlining the potential of microbial consortia as promising tool for sustainable biotechnology and agriculture.

12.
RSC Adv ; 10(7): 3636-3645, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492640

RESUMO

Recent investigations of layered, rock salt and spinel-type manganese oxides in composite powder electrodes revealed the mutual stabilization of the Li-Mn-O compounds during electrochemical cycling. A novel approach of depositing such complex compounds as an active cathode material in thin-film battery electrodes is demonstrated in this work. It shows the maximum capacity of 226 mA h g-1 which is superior in comparison to that of commercial LiMn2O4 powder as well as thin films. Reactive ion beam sputtering is used to deposit films of a Li2MnO3-δ composition. The method allows for tailoring of the active layer's crystal structure by controlling the oxygen partial pressure during deposition. Electron diffractometry reveals the presence of layered monoclinic and defect rock salt structures, the former transforms during cycling and results in thin films with extraordinary electrochemical properties. X-ray photoelectron spectroscopy shows that a large amount of disorder on the cation sub-lattices has been incorporated in the structure, which is beneficial for lithium migration and cycle stability.

13.
Front Microbiol ; 10: 1629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396172

RESUMO

Apples are among the most consumed fruits world-wide. They represent a source of direct human exposure to bacterial communities, which is less studied. We analyzed the apple microbiome to detect differences between tissues and the impact of organic and conventional management by a combined approach of 16S rRNA gene amplicon analysis and qPCR, and visualization using fluorescence in situ hybridization and confocal laser scanning microscopy (FISH-CLSM). Each apple fruit harbors different tissues (stem, peel, fruit pulp, seeds, and calyx), which were colonized by distinct bacterial communities. Interestingly, fruit pulp and seeds were bacterial hot spots, while the peel was less colonized. In all, approximately 108 16S rRNA bacterial gene copy numbers were determined in each g apple. Abundances were not influenced by the management practice but we found a strong reduction in bacterial diversity and evenness in conventionally managed apples. In addition, despite the similar structure in general dominated by Proteobacteria (80%), Bacteroidetes (9%), Actinobacteria (5%), and Firmicutes (3%), significant shifts of almost 40% of bacterial genera and orders were monitored. Among them, especially bacterial signatures known for health-affecting potential were found to be enhanced in conventionally managed apples. Our results suggest that we consume about 100 million bacterial cells with one apple. Although this amount was the same, the bacterial composition was significantly different in conventionally and organically produced apples.

14.
Microbiome ; 7(1): 108, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340847

RESUMO

BACKGROUND: The plant microbiota is crucial for plant health and growth. Recently, vertical transmission of a beneficial core microbiota was identified for crop seeds, but for native plants, complementary mechanisms are almost completely unknown. METHODS: We studied the seeds of eight native plant species growing together for centuries under the same environmental conditions in Alpine meadows (Austria) by qPCR, FISH-CLSM, and amplicon sequencing targeting bacteria, archaea, and fungi. RESULTS: Bacteria and fungi were determined with approx. 1010 gene copy numbers g-1 seed as abundant inhabitants. Archaea, which were newly discovered as seed endophytes, are less and represent only 1.1% of the signatures. The seed microbiome was highly diversified, and all seeds showed a species-specific, highly unique microbial signature, sharing an exceptionally small core microbiome. The plant genotype (species) was clearly identified as the main driver, while different life cycles (annual/perennial) had less impact on the microbiota composition, and fruit morphology (capsule/achene) had no significant impact. A network analysis revealed significant co-occurrence patterns for bacteria and archaea, contrasting with an independent fungal network that was dominated by mutual exclusions. CONCLUSIONS: These novel insights into the native seed microbiome contribute to a deeper understanding of seed microbial diversity and phytopathological processes for plant health, and beyond that for ecosystem plasticity and diversification within plant-specific microbiota.


Assuntos
Microbiota , Plantas/microbiologia , Sementes/microbiologia , Archaea/classificação , Áustria , Bactérias/classificação , Fungos/classificação , Genótipo , Pradaria , Plantas/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Front Microbiol ; 10: 3013, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010087

RESUMO

Endophytic fungi are often embedded in their host's metabolic networks, which can result in alterations of metabolite production and higher amounts of active compounds in medicinal plants. This study reports the occurrence, diversity, and secondary metabolite profiles of endophytic fungi isolated from Salvia abrotanoides plants obtained from three geographically distinct sites in Iran. A total of 56 endophytic fungi were isolated from roots and leaves of S. abrotanoides; site-specificity and root-dominated colonization was found to be a general characteristic of the endophytes. Based on molecular identification, the endophytic fungi were classified into 15 genera. Mycelial extracts of these isolates were subjected to high-resolution mass spectrometry analyses and revealed a broad spectrum of secondary metabolites. Our results demonstrated that Penicillium canescens, P. murcianum, Paraphoma radicina, and Coniolariella hispanica are producers of cryptotanshinone, which is a main bioactive compound of S. abrotanoides. Moreover, it was shown that it can be produced independent of the host plant. The effect of exogenous gibberellin on S. abrotanoides and endophytic fungi was shown to have a positive effect on increasing the cryptotanshinone production in the plant as well as in endophytic fungi cultivated under axenic conditions. Our findings provide further evidence that endophytic fungi play an important role in the production plant bioactive metabolites. Moreover, they provide an exploitable basis to increase cryptotanshinone production in S. abrotanoides.

16.
Stand Genomic Sci ; 12: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29152037

RESUMO

10.1601/nm.2592 strain RM1-1-4 is a rhizosphere colonizer of oilseed rape. A previous study has shown that this motile, Gram-negative, non-sporulating bacterium is an effective stress protecting and biocontrol agent, which protects their hosts against abiotic and biotic stresses. Here, we announce and describe the complete genome sequence of P. corrugata RM1-1-4 consisting of a single 6.1 Mb circular chromosome that encodes 5189 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes predicting functions such as detoxifying mechanisms, stress inhibitors, exoproteases, lipoproteins or volatile components as well as rhizobactin siderophores and spermidine. Further analysis of its genome will help to identify traits promising for stress protection, biocontrol and plant growth promotion properties.

17.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430944

RESUMO

The microbiome of plants plays a crucial role in both plant and ecosystem health. Rapid advances in multi-omics tools are dramatically increasing access to the plant microbiome and consequently to the identification of its links with diseases and to the control of those diseases. Recent insights reveal a close, often symbiotic relationship between microorganisms and plants. Microorganisms can stimulate germination and plant growth, prevent diseases, and promote stress resistance and general fitness. Plants and their associated microorganisms form a holobiont and have to be considered as co-evolved species assemblages consisting of bacterial, archaeal and diverse eukaryotic species. The beneficial interplay of the host and its microbiome is responsible for maintaining the health of the holobiont, while diseases are often correlated with microbial dysbioses. Microbial diversity was identified as a key factor in preventing diseases and can be implemented as a biomarker in plant protection strategies. Targeted and predictive biocontrol approaches are possible by developing microbiome-based solutions. Moreover, combined breeding and biocontrol strategies maintaining diversity and ecosystem health are required. The analysis of plant microbiome data has brought about a paradigm shift in our understanding of its role in health and disease and has substantial consequences for biocontrol and health issues.


Assuntos
Microbiota/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Simbiose/fisiologia , Biodiversidade , Agentes de Controle Biológico , Ecossistema , Desenvolvimento Vegetal , Compostos Orgânicos Voláteis/metabolismo
18.
Stand Genomic Sci ; 12: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28078051

RESUMO

Pseudomonas brassicacearum strain L13-6-12 is a rhizosphere colonizer of potato, lettuce and sugar beet. Previous studies have shown that this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against different phytopathogens. Here, we announce and describe the complete genome sequence of P. brassicacearum L13-6-12 consisting of a single 6.7 Mb circular chromosome that consists of 5773 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes encoding specialized functions for pathogen suppression, thriving in the rhizosphere and interacting with eukaryotic organisms.

19.
Stand Genomic Sci ; 11(1): 61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602183

RESUMO

The Serratia plymuthica strains 3Rp8 and 3Re4-18 are motile, Gram-negative, non-sporulating bacteria. Strain 3Rp8 was isolated from the rhizosphere of Brassica napus L. and strain 3Re4-18 from the endorhiza of Solanum tuberosum L. Studies have shown in vitro activity against the soil-borne fungi Verticillium dahliae Kleb., Rhizoctonia solani Kühn, and Sclerotinia sclerotiorum. Here, we announce and describe the complete genome sequence of S. plymuthica 3Rp8 consisting of a single circular chromosome of 5.5 Mb that encodes 4954 protein-coding and 108 RNA-only encoding genes and of S. plymuthica 3Re4-18 consisting of a single circular chromosome of 5.4 Mb that encodes 4845 protein-coding and 109 RNA-only encoding genes. The whole genome sequences and annotations are available in NCBI under the locus numbers CP012096 and CP012097, respectively. The genome analyses revealed genes putatively responsible for the promising plant growth promoting and biocontrol properties including predicting factors such as secretion systems, iron scavenging siderophores, chitinases, secreted proteases, glucanases and non-ribosomal peptide synthetases, as well as unique genomic islands.

20.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27624084

RESUMO

The plant microbiome is a key determinant of plant health. Less is known about the phyllosphere microbiota and its driving factors in built environments. To study the variability of the microbiome in relation to plant genotype and climate under different controlled conditions, we investigated 14 phylogenetically diverse plant species grown in the greenhouses of the Botanical Garden in Graz (Austria). All investigated plants showed specific bacterial abundances of up to 10(6) CFU cm(-2) on their leaves. Bacterial diversity (H('): 2.4-7.9) and number of putative OTUs (461-2013) were strongly plant species dependent. Statistical analysis showed a significantly higher correlation of community composition to plant genotype in comparison to the ambient climatic variables. In addition to the microbiome structure, we studied the antagonistic potential towards the foliar pathogen Botrytis cinerea as functional indicator. A high proportion of isolates (up to 58%) were able to inhibit pathogen growth by production of volatile organic compounds (VOCs). Data of structure and function were linked: frequently isolated VOCs producers (e.g. Bacillus and Stenotrophomonas) were highly present in phyllosphere communities, which were dominated by members of Firmicutes This study indicates that indoor ornamentals feature a distinct, stable microbiota on leaves irrespective of the indoor climate.


Assuntos
Botrytis/crescimento & desenvolvimento , Microbiota , Folhas de Planta/microbiologia , Plantas/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Áustria , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/metabolismo , Biodiversidade , Firmicutes/isolamento & purificação , Filogenia , Plantas/genética , RNA Ribossômico 16S/genética , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Stenotrophomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...