Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 766, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123119

RESUMO

BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.


Assuntos
Medicago truncatula , Micorrizas , Proteínas de Plantas , Nodulação , Simbiose , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Mutação , Genes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Homeostase , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
2.
Plant Physiol ; 194(3): 1336-1357, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37930810

RESUMO

Plants must rapidly and dynamically adapt to changes in their environment. Upon sensing environmental signals, plants convert them into cellular signals, which elicit physiological or developmental changes that allow them to respond to various abiotic and biotic cues. Because plants can be simultaneously exposed to multiple environmental cues, signal integration between plant cells, tissues, and organs is necessary to induce specific responses. Recently, CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides and their cognate CLAVATA-type receptors received increased attention for their roles in plant-environment interactions. CLE peptides are mobile signaling molecules, many of which are induced by a variety of biotic and abiotic stimuli. Secreted CLE peptides are perceived by receptor complexes on the surface of their target cells, which often include the leucine-rich repeat receptor-like kinase CLAVATA1. Receptor activation then results in cell-type and/or environment-specific responses. This review summarizes our current understanding of the diverse roles of environment-regulated CLE peptides in modulating plant responses to environmental cues. We highlight how CLE signals regulate plant physiology by fine-tuning plant-microbe interactions, nutrient homeostasis, and carbon allocation. Finally, we describe the role of CLAVATA receptors in the perception of environment-induced CLE signals and discuss how diverse CLE-CLAVATA signaling modules may integrate environmental signals with plant physiology and development.


Assuntos
Interação Gene-Ambiente , Transdução de Sinais , Transporte Biológico , Carbono , Peptídeos
3.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38106087

RESUMO

Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of Nodulation (AON) and Autoregulation of Mycorrhization (AOM) share multiple components - plants that make too many nodules usually have higher arbuscule density. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in Lotus japonicus. M. truncatula has two sequence homologs: MtTML1 and MtTML2. We report the generation of stable single and double mutants harboring multiple allelic variations in MtTML1 and MtTML2 using CRISPR-Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations in either gene produced twice the nodules of wild type plants whereas plants containing mutations in both genes displayed a synergistic effect, forming 20x more nodules and short roots compared to wild type plants. The synergistic effect on nodulation was maintained in the presence of 10mM nitrogen, but not observed in root length phenotypes. Examination of expression and heterozygote effects suggest genetic compensation may play a role in the observed synergy. However, plants with mutations in both TMLs had no detectable change in arbuscular mycorrhizal associations, suggesting that MtTMLs are specific to nodulation and nitrate signaling. The mutants created will be useful tools to dissect the mechanism of synergistic action of MtTML1 and MtTML2 in M. truncatula nodulation as well as the separation of AON from AOM.

4.
Trends Plant Sci ; 27(9): 870-889, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35246381

RESUMO

Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.


Assuntos
Fabaceae , Micorrizas , Micorrizas/fisiologia , Peptídeos , Raízes de Plantas/microbiologia , Plantas/microbiologia , Simbiose/fisiologia
10.
Curr Opin Plant Biol ; 15(6): 659-69, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22884521

RESUMO

In plants, receptor-like kinases regulate many processes during reproductive and vegetative development. The Arabidopsis subfamily of Catharanthus roseus RLK1-like kinases (CrRLK1Ls) comprises 17 members with a putative extracellular carbohydrate-binding malectin-like domain. Only little is known about the functions of these proteins, although mutant analyses revealed a role during cell elongation, polarized growth, and fertilization. However, the molecular nature of the underlying signal transduction cascades remains largely unknown. CrRLK1L proteins are also involved in biotic and abiotic stress responses. It is likely that carbohydrate-rich ligands transmit a signal, which could originate from cell wall components, an arriving pollen tube, or a pathogen attack. Thus, post-translational modifications could be crucial for CrRLK1L signal transduction and ligand binding.


Assuntos
Proteínas de Arabidopsis/metabolismo , Comunicação Celular , Parede Celular/enzimologia , Fosfotransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Crescimento Celular , Polaridade Celular , Parede Celular/imunologia , Fosfotransferases/genética , Células Vegetais/enzimologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Tubo Polínico/citologia , Tubo Polínico/enzimologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Estresse Fisiológico , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA