Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38237841

RESUMO

Anxiety is among the most prevalent mental disorders present in the general population. Benzodiazepines are the most commonly prescribed drugs for the treatment of anxiety. Using zebrafish as a model organism, we investigated the anxiolytic activity of JM-20, a novel hybrid molecule with a 1,5-benzodiazepine ring fused to a dihydropyridine moiety. Firstly, we carried out some assays to analyze the possible toxicity mediated by JM-20. For this, zebrafish were exposed to different JM-20 concentrations (0-5 µM) for 96 h. Then, using the novel tank test, we evaluated both locomotor and anxiety-like behavior of the animals. Furthermore, brain, liver and plasma were removed to assess toxicity parameters. JM-20 exposure did not cause changes on novel tank, and also did not alter brain viability, hepatic LDH and plasma ALT levels. Afterward, we investigated whether a pre-exposure to JM-20 would prevent the anxiogenic effect evoked by caffeine. In the novel tank test, caffeine significantly decreased the time spent at the top, as well as the number of transitions to the top area. Moreover, caffeine decreased both the total and average time spent in the lit area, as well as increased the number of risk episodes evaluated by the light-dark test. Whole-body cortisol levels were also increased by caffeine exposure. Interestingly, pre-treatment with JM-20 abolished all alterations induced by caffeine. The anxiolytic effect profile of JM-20 was similar to those found for diazepam (positive control). Our findings show, for the first time, the anxiolytic effect of JM-20 in zebrafish, and its relationship with cortisol regulation.


Assuntos
Ansiolíticos , Humanos , Animais , Ansiolíticos/farmacologia , Cafeína/toxicidade , Peixe-Zebra/fisiologia , Hidrocortisona/farmacologia , Comportamento Animal , Fenótipo
2.
Ecotoxicology ; 30(4): 585-598, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33770304

RESUMO

The high demand for food consequently increases the entry of agricultural residues into water resources, and this phenomenon can affect non-target organisms in different ways. Environmentally relevant pesticide effects (per se or in combinations) are scarce in the scientific literature. Therefore, the aim of this study was to investigate: (1) the presence of pesticide residues in an important Brazilian source of water supply and power generation (Jacuí river), during 1 year of monitoring. (2) in a laboratory study verify the effects of the most frequently, herbicide, fungicide, and insecticide found in Jacuí river (individualized or in a mixture) on biochemical parameters in different tissues of Oreochromis niloticus. Twenty pesticide residues were detected in superficial water samples, and two of them are banned in Brazilian territory. Atrazine (0.56 µg L-1), azoxystrobin (0.024 µg L-1), and imidacloprid (0.11 µg L-1) were the most frequently herbicide, fungicide, and insecticide, respectively, found in the river and were used in the laboratory assay. O. niloticus exposed to the pesticide mixture exhibited more biochemical effects than individualized exposure groups. This response can be a result of the combined pesticide effects, culminating in an additive or synergistic effect, depending on the biomarker. In individual exposure groups, atrazine presented the most pronounced alterations, followed by azoxystrobin and imidacloprid. Overall, pesticide exposure increased levels of oxidative stress parameters, reduced antioxidant enzyme activities, and induced acetylcholinesterase activity. These findings highlight the threat to aquatic organisms which may be exposed to a miscellaneous of toxic compounds in the environment.


Assuntos
Atrazina , Ciclídeos , Praguicidas , Poluentes Químicos da Água , Animais , Brasil , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Ecotoxicol Environ Saf ; 205: 111314, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956866

RESUMO

Brazilian freshwater ecosystems are continuously exposed to pesticides and domestic sewage. The Uruguay River was chosen for this study because of its international importance, as it flows through Brazil, Argentina, and Uruguay. It receives contaminants such as pesticides and domestic residues. Thus, the aim of this study to assess the accumulation of pesticides in muscle of the fish Astyanax jacuhiensis, its biochemical responses, and the presence of pesticides in water. In total, seven pesticides were registered in water from both river sites. Eight pesticides were detected in fish muscle. The biochemical responses showed that brain lipid peroxidation (LPO) and protein carbonyl (PC) in A. jacuhiensis were higher in the summer. Muscle showed the highest LPO levels in the spring and the highest PC in the summer. Liver LPO and PC levels were higher in the spring and summer. In the gills, the PC was higher in the spring and the LPO in the spring and winter. In the brain and in the gills, glutathione-S-transferase activity was high in the summer and autumn. Catalase activity was lower during the winter and spring. Non-protein thiol (NPSH) levels were lower in the brain in the winter and spring. Muscle tissue showed lower NPSH in the winter (site 1). Liver NPSH showed increased levels in liver in the spring and winter (site 2). The biochemical results clearly is related to pesticides and/or to the presence of other contaminants in the water such as metals or domestic sewage. The accumulation of pesticides in fish muscle added evidence that pesticides have been used in the area surrounding the Uruguay River. In conclusion, the biomarkers assayed in the present study could be used in future investigations considering other sampling sites along Uruguay River.


Assuntos
Characidae/fisiologia , Monitoramento Ambiental , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Brasil , Characidae/metabolismo , Caraciformes/metabolismo , Caraciformes/fisiologia , Ecossistema , Brânquias/metabolismo , Peroxidação de Lipídeos , Metais/metabolismo , Praguicidas/análise , Rios/química , Estações do Ano , Poluentes Químicos da Água/análise
4.
Mol Biol Rep ; 46(3): 3399-3409, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31016615

RESUMO

Zinc is an essential trace mineral that is involved in many biological processes. In elevated concentrations, this metal may have toxic effects for aquatic organisms. Physicochemical properties of water, such as salinity and hardness, can influence the bioavailability of zinc and, therefore its toxicity in aquatic environments. Therefore, this study aimed investigate the influence of salinity, hardness on Zn toxicity on the behaviours and biochemical parameters of the estuarine guppy (Poecilia vivipara). The fish were exposed to waterborne zinc (500 µg L-1) in salt water (25 ppt) or hard water (120 mg L-1 CaCO3). For behavioural analysis, the locomotive and exploratory parameters of fish in novel environment and light-dark tests were evaluated. We observed that exposure to hard water decreased the distance covered by the fish, and when zinc also present the vertical exploratory behavior decreased. When zinc was tested alone, an increase in the maximum speed of fish was recorded. Activities of antioxidant enzymes, levels of lipid peroxidation, protein carbonylation, total peroxidation and, reactive oxygen species content, antioxidant capacity against peroxyl radicals, non-proteins thiols levels, acetylcholinesterase and Na+/K+-ATPase activities were evaluated in the whole fish body. The integrated biomarker response was calculated for each parameter to aid in the interpretation of the results and indicated that hard water containing zinc had the greatest effect on the biochemical parameters of the fish. In general, neither salinity nor hardness were totally effective in protecting the guppy from the biochemical damage caused by exposure to zinc.


Assuntos
Comportamento Animal/efeitos dos fármacos , Zinco/metabolismo , Zinco/toxicidade , Animais , Antioxidantes/metabolismo , Brânquias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Poecilia , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Água/química , Água/metabolismo , Poluentes Químicos da Água/toxicidade
5.
J Trace Elem Med Biol ; 53: 62-68, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30910208

RESUMO

Previous findings showed that the nanoencapsulation of diphenyl diselenide [(PhSe)2], an organoselenium compound, provided superior biological effects and lower toxicological potential than its free form in vitro. However, few studies reported the behavioral and biochemical effects of this nanocapsules formulation in vivo. Zebrafish (Danio rerio) has emerged as a useful animal model to determine the pharmacological and toxicological effects of nanoparticles. Here, we evaluated the behavioral and brain oxidative effects after zebrafish exposure to (PhSe)2-loaded nanocapsules. Formulations were prepared by interfacial deposition of preformed polymer method and later tested at concentrations ranging from 0.1 to 2.0 µM. Both locomotor and exploratory activities were assessed in the novel tank diving test. Moreover, brain oxidative status was determined by measuring thiobarbituric acid-reactive substance levels, glutathione peroxidase, glutathione redutase and glutathione S-transferase activities. (PhSe)2-loaded nanocapsules showed no alteration on travelled distance, immobility, and erratic swimming, suggesting the absence of behavioral impairments. Interestingly, the higher concentration tested had anxiolytic-like effects, since animals spent more time in the top area and showed a decreased thigmotaxis behavior. Biochemical analysis demonstrated that the concentrations used in this study did not affect oxidative stress-related parameters in brain samples, reinforcing the low toxicological potential of the formulation. In conclusion, the exposure to (PhSe)2-loaded nanocapsules caused no locomotor impairments as well as did not modify the oxidative status of zebrafish brain, indicating that this formulation is probably non-toxic and promising for future pharmacological studies.


Assuntos
Derivados de Benzeno/administração & dosagem , Derivados de Benzeno/farmacologia , Encéfalo/efeitos dos fármacos , Nanocápsulas/administração & dosagem , Compostos Organosselênicos/administração & dosagem , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polímeros/administração & dosagem , Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Masculino
6.
Prog Neuropsychopharmacol Biol Psychiatry ; 79(Pt B): 105-111, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28602852

RESUMO

Repeated ethanol (EtOH) consumption induces neurological disorders in humans and is considered an important public health problem. The physiological effects of EtOH are dose- and time-dependent, causing relevant changes in the social behavior. In addition, alcohol-induced oxidative stress has been proposed as a key mechanism involved in EtOH neurotoxicity. Here we investigate for the first time whether repeated EtOH exposure (REE) alters the social behavior of zebrafish and influences brain oxidation processes. Animals were exposed to water (control group) or 1% (v/v) EtOH (EtOH group) for 8 consecutive days (20min per day). EtOH was added directly to the tank water. At day 9, the social behavior and biochemical parameters were assessed. REE increased shoal cohesion by reducing inter-fish and farthest neighbor distances. SOD and CAT activities, as well as NPSH levels decreased in brain tissue. Moreover, REE increased lipid peroxidation suggesting oxidative damage. In summary, changes in oxidation processes may play a role in the CNS effects of EtOH, influencing the social behavior of zebrafish. Furthermore, in a translational neuroscience perspective, our data reinforces the utility of zebrafish to clarify the biochemical and behavioral effects of intermittent EtOH administration.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Comportamento Social , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Peixe-Zebra
7.
Nutrition ; 31(2): 359-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25592015

RESUMO

OBJECTIVE: The aim of this study was to explore the effects of selenium (Se) on locomotor activity and DNA damage in a rat model of Parkinson's disease (PD) induced by paraquat (PQ). METHODS: Forty-eight male Wistar rats were divided into four groups: control group (n = 12), Se group (n = 12), PQ group (n = 12), and Se + PQ group (n = 12). PQ was administered intraperitoneally (10 mg/kg). Se was offered in the drinking water at a concentration of 11.18 µg/L. Locomotor activity was evaluated weekly using the narrow beam test. The comet assay was performed to assess the level of DNA damage in leukocytes and in brain cells. RESULTS: As expected, increased DNA damage was found in the PQ group compared with the control and Se groups (P < 0.001). Interestingly, coadministration of Se and PQ effectively prevented the harmful effects of the toxin in locomotor activity and at the molecular level, reducing bradykinesia (P < 0.01) and DNA damage in leukocytes compared with the PQ-only group (P < 0.001), whereas the levels of DNA damage were comparable to those found in the control and Se groups (P > 0.05). Using the comet assay to analyze brain cells, no differences were found between the groups with regard to damage index (P = 0.774), damage frequency (P = 0.817), or non-detectable cell nuclei (P = 0.481). CONCLUSION: In this experimental model of PQ-induced PD, the use of Se could contribute to the maintenance of locomotor activity and the integrity of leukocytes DNA. No changes in the levels of DNA damage in brain cells were observed between the experimental groups.


Assuntos
Dano ao DNA , Hipocinesia/sangue , Hipocinesia/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Selênio/administração & dosagem , Selênio/sangue , Animais , Ensaio Cometa , Modelos Animais de Doenças , Masculino , Paraquat/toxicidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...