Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38744280

RESUMO

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.

2.
Methods Cell Biol ; 187: 1-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705621

RESUMO

Correlative light and electron microscopy (CLEM) is an approach that combines the strength of multiple imaging techniques to obtain complementary information about a given specimen. The "toolbox" for CLEM is broad, making it sometimes difficult to choose an appropriate approach for a given biological question. In this chapter, we provide experimental details for three CLEM approaches that can help the interested reader in designing a personalized CLEM strategy for obtaining ultrastructural data by using transmission electron microscopy (TEM). First, we describe chemical fixation of cells grown on a solid support (broadest approach). Second, we apply high-pressure freezing/freeze substitution to describe cellular ultrastructure (cryo-immobilization approach). Third, we give a protocol for a ultrastructural labeling by immuno-electron microscopy (immuno-EM approach). In addition, we also describe how to overlay fluorescence and electron microscopy images, an approach that is applicable to each of the reported different CLEM strategies. Here we provide step-by step descriptions prior to discussing possible technical problems and variations of these three general schemes to suit different models or different biological questions. This chapter is written for electron microscopists that are new to CLEM and unsure how to begin. Therefore, our protocols are meant to provide basic information with further references that should help the reader get started with applying a tailored strategy for a specific CLEM experiment.


Assuntos
Microscopia Eletrônica de Transmissão , Humanos , Microscopia Eletrônica de Transmissão/métodos , Animais , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica/métodos , Microscopia Imunoeletrônica/métodos , Microscopia de Fluorescência/métodos , Substituição ao Congelamento/métodos
3.
Bio Protoc ; 13(20): e4849, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37900106

RESUMO

For the analysis of cellular architecture during mitosis, nanometer resolution is needed to visualize the organization of microtubules in spindles. Here, we present a detailed protocol that can be used to produce 3D reconstructions of whole mitotic spindles in cells grown in culture. For this, we attach mammalian cells enriched in mitotic stages to sapphire discs. Our protocol further involves cryo-immobilization by high-pressure freezing, freeze-substitution, and resin embedding. We then use fluorescence light microscopy to stage select mitotic cells in the resin-embedded samples. This is followed by large-scale electron tomography to reconstruct the selected and staged mitotic spindles in 3D. The generated and stitched electron tomograms are then used to semi-automatically segment the microtubules for subsequent quantitative analysis of spindle organization. Thus, by providing a detailed correlative light and electron microscopy (CLEM) approach, we give cell biologists a toolset to streamline the 3D visualization and analysis of spindle microtubules (http://kiewisz.shinyapps.io/asga). In addition, we refer to a recently launched platform that allows for an interactive display of the 3D-reconstructed mitotic spindles (https://cfci.shinyapps.io/ASGA_3DViewer/). Key features • High-throughput screening of mitotic cells by correlative light and electron microscopy (CLEM). • Serial-section electron tomography of selected cells. • Visualization of mitotic spindles in 3D and quantitative analysis of microtubule organization.

5.
PLoS One ; 18(7): e0285073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498864

RESUMO

Spermatogenesis leads to the formation of functional sperm cells. Here we have applied high-pressure freezing in combination with transmission electron microscopy (TEM) to study the ultrastructure of sperm development in subadult males of the praying mantid Hierodula membranacea, a species in which spermatogenesis had not previously been studied. We show the ultrastructure of different stages of sperm development in this species. Thorough examination of TEM data and electron tomographic reconstructions revealed interesting structural features of the nebenkern, an organelle composed of fused mitochondria that has been studied in spermatids of other insect species. We have applied serial-section electron tomography of the nebenkern to demonstrate in three dimensions (3D) that this organelle in H. membranacea is composed of two interwoven mitochondrial derivatives, and that the mitochondrial derivatives are connected by a zipper-like structure at opposing positions. Our approach will enable further ultrastructural analyses of the nebenkern in other organisms.


Assuntos
Mantódeos , Animais , Masculino , Sêmen , Espermatogênese , Espermatozoides , Espermátides , Mitocôndrias
6.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790431

RESUMO

In 1891, the existence of an X chromosome was noted for the first time. Hermann Henking was studying spermatocyte divisions of the firebug Pyrrhocoris apterus and observed that one chromosome behaved differently than all of the rest of the chromosomes. Henking called this chromosome 'Element x'. Henking's discovery of the X element (later called X chromosome) initiated more than a century of fascinating genetics and cell biology, forming the foundation of several avenues of research in biology. His work led to exploration of a number of questions in a wide range of model systems and very soon to the abandonment of the firebug as a model for studies on the behavior of chromosomes in meiosis. Here, we argue that studies on both bivalent and univalent chromosome behavior in general, and work on how to solve chromosome lagging to prevent aneuploidy in particular, should lead us back to using the firebug as a model for error correction during cell division.


Assuntos
Cromossomos , Meiose , Humanos , Cromossomos/genética , Aneuploidia
7.
Curr Biol ; 33(5): 791-806.e7, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36693370

RESUMO

Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.


Assuntos
Caenorhabditis elegans , Centrossomo , Animais , Humanos , Caenorhabditis elegans/genética , Centrossomo/metabolismo , Centríolos/metabolismo , Microtúbulos/metabolismo , Mitose , Estresse do Retículo Endoplasmático
8.
Mol Biol Cell ; 34(1): ar1, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350698

RESUMO

Faithful chromosome segregation requires the assembly of a bipolar spindle, consisting of two antiparallel microtubule (MT) arrays having most of their minus ends focused at the spindle poles and their plus ends overlapping in the spindle midzone. Spindle assembly, chromosome alignment, and segregation require highly dynamic MTs. The plus ends of MTs have been extensively investigated but their minus-end structure remains poorly characterized. Here, we used large-scale electron tomography to study the morphology of the MT minus ends in three dimensionally reconstructed metaphase spindles in HeLa cells. In contrast to the homogeneous open morphology of the MT plus ends at the kinetochores, we found that MT minus ends are heterogeneous, showing either open or closed morphologies. Silencing the minus end-specific stabilizer, MCRS1 increased the proportion of open MT minus ends. Altogether, these data suggest a correlation between the morphology and the dynamic state of the MT ends. Taking this heterogeneity of the MT minus-end morphologies into account, our work indicates an unsynchronized behavior of MTs at the spindle poles, thus laying the groundwork for further studies on the complexity of MT dynamics regulation.


Assuntos
Cinesinas , Fuso Acromático , Humanos , Células HeLa , Cinesinas/metabolismo , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA
9.
PLoS One ; 17(8): e0272978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960713

RESUMO

Praying mantids are important models for studying a wide range of chromosome behaviors, yet few species of mantids have been characterized chromosomally. Here we show that the praying mantid Hierodula membranacea has a chromosome number of 2n = 27, and X1X1X2X2 (female): X1X2Y (male) sex determination. In male meiosis I, the X1, X2, and Y chromosomes of H. membranacea form a sex trivalent, with the Y chromosome associating with one spindle pole and the X1 and X2 chromosomes facing the opposite spindle pole. While it is possible that such a sex trivalent could experience different spindle forces on each side of the trivalent, in H. membranacea the sex trivalent aligns at the spindle equator with all of the autosomes, and then the sex chromosomes separate in anaphase I simultaneously with the autosomes. With this observation, H. membranacea can be used as a model system to study the balance of forces acting on a trivalent during meiosis I and analyze the functional importance of chromosome alignment in metaphase as a preparatory step for subsequent correct chromosome segregation.


Assuntos
Mantódeos , Animais , Segregação de Cromossomos , Feminino , Masculino , Mantódeos/genética , Meiose/genética , Metáfase , Cromossomos Sexuais , Fuso Acromático , Cromossomo Y
10.
Elife ; 112022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876665

RESUMO

During eukaryotic cell division, chromosomes are linked to microtubules (MTs) in the spindle by a macromolecular complex called the kinetochore. The bound kinetochore microtubules (KMTs) are crucial to ensuring accurate chromosome segregation. Recent reconstructions by electron tomography (Kiewisz et al., 2022) captured the positions and configurations of every MT in human mitotic spindles, revealing that roughly half the KMTs in these spindles do not reach the pole. Here, we investigate the processes that give rise to this distribution of KMTs using a combination of analysis of large-scale electron tomography, photoconversion experiments, quantitative polarized light microscopy, and biophysical modeling. Our results indicate that in metaphase, KMTs grow away from the kinetochores along well-defined trajectories, with the speed of the KMT minus ends continually decreasing as the minus ends approach the pole, implying that longer KMTs grow more slowly than shorter KMTs. The locations of KMT minus ends, and the turnover and movements of tubulin in KMTs, are consistent with models in which KMTs predominately nucleate de novo at kinetochores in metaphase and are inconsistent with substantial numbers of non-KMTs being recruited to the kinetochore in metaphase. Taken together, this work leads to a mathematical model of the self-organization of kinetochore-fibers in human mitotic spindles.


Assuntos
Cinetocoros , Fuso Acromático , Segregação de Cromossomos , Cromossomos , Humanos , Metáfase , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
11.
Elife ; 112022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35894209

RESUMO

During cell division, kinetochore microtubules (KMTs) provide a physical linkage between the chromosomes and the rest of the spindle. KMTs in mammalian cells are organized into bundles, so-called kinetochore-fibers (k-fibers), but the ultrastructure of these fibers is currently not well characterized. Here, we show by large-scale electron tomography that each k-fiber in HeLa cells in metaphase is composed of approximately nine KMTs, only half of which reach the spindle pole. Our comprehensive reconstructions allowed us to analyze the three-dimensional (3D) morphology of k-fibers and their surrounding MTs in detail. We found that k-fibers exhibit remarkable variation in circumference and KMT density along their length, with the pole-proximal side showing a broadening. Extending our structural analysis then to other MTs in the spindle, we further observed that the association of KMTs with non-KMTs predominantly occurs in the spindle pole regions. Our 3D reconstructions have implications for KMT growth and k-fiber self-organization models as covered in a parallel publication applying complementary live-cell imaging in combination with biophysical modeling (Conway et al., 2022). Finally, we also introduce a new visualization tool allowing an interactive display of our 3D spindle data that will serve as a resource for further structural studies on mitosis in human cells.


Assuntos
Cinetocoros , Fuso Acromático , Animais , Cromossomos , Células HeLa , Humanos , Mamíferos , Metáfase , Microtúbulos/ultraestrutura , Fuso Acromático/ultraestrutura
12.
Eur J Immunol ; 52(1): 44-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606636

RESUMO

Crosslinking of FcεRI-bound IgE triggers the release of a large number of biologically active, potentially anaphylactic compounds by mast cells. FcεRI activation ought to be well-controlled to restrict adverse activation. As mast cells are embedded in tissues, adhesion molecules may contribute to limiting premature activation. Here, we report that E-Cadherin serves that purpose. Having confirmed that cultured mast cells express E-Cadherin, a mast-cell-specific E-Cadherin deficiency, Mcpt5-Cre E-Cdhfl/fl mice, was used to analyze mast cell degranulation in vitro and in vivo. Cultured peritoneal mast cells from Mcpt5-Cre E-Cdhfl/fl mice were normal with respect to many parameters but showed much-enhanced degranulation in three independent assays. Soluble E-Cadherin reduced the degranulation of control cells. The release of some newly synthesized inflammatory cytokines was decreased by E-Cadherin deficiency. Compared to controls, Mcpt5-Cre E-Cdhfl/fl mice reacted much stronger to IgE-dependent stimuli, developing anaphylactic shock. We suggest E-Cadherin-mediated tissue interactions restrict mast cell degranulation to prevent their precocious activation.


Assuntos
Caderinas/imunologia , Degranulação Celular/imunologia , Mastócitos/imunologia , Animais , Caderinas/genética , Degranulação Celular/genética , Citocinas/genética , Citocinas/imunologia , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Transgênicos , Receptores de IgE/genética , Receptores de IgE/imunologia
13.
J Microsc ; 284(1): 25-44, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110027

RESUMO

We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labour. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualisation of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialised, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualisation and interaction tools for each processing step to guarantee real-time response, and an optimised workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists. LAY DESCRIPTION: Electron tomography of biological samples is used for a three-dimensional (3D) reconstruction of filamentous structures, such as microtubules (MTs) in mitotic and meiotic spindles. Large-scale electron tomography can be applied to increase the reconstructed volume for the visualisation of full spindles. For this, each spindle is cut into a series of semi-thick physical sections, from which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. Previously, we presented fully automatic approaches for this 3D reconstruction pipeline. However, large volumes often suffer from imperfections (ie physical distortions) caused by the image acquisition process, making it difficult to apply fully automatic approaches for matching and stitching of numerous tomograms. Therefore, we developed an interactive, semi-automatic solution that considers all requirements for large-scale stitching of microtubules in image stacks of consecutive sections. We achieved this by combining automatic methods, visual validation and interactive error correction, thus allowing the user to continuously improve the result by interactively correcting landmarks or matches of filaments. We present large-scale reconstructions of spindles in which the automatic workflow failed and where different steps of manual corrections were needed. Our approach is also applicable to other biological samples showing 3D distributions of MTs in a number of different cellular contexts.


Assuntos
Tomografia com Microscopia Eletrônica , Fuso Acromático , Tomografia/instrumentação , Técnicas Histológicas , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional , Microtúbulos , Software
14.
Methods Cell Biol ; 162: 151-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707011

RESUMO

We introduce a new workflow that allows screening and selection of staged mammalian cells in mitosis prior to subsequent electron microscopy. We mainly describe four improved steps of specimen preparation. Firstly, we describe a method to efficiently enrich mammalian cells and attach them to sapphire discs; secondly, we report on the use of 3D-printed containers to seed cells on coated sapphire discs for high-pressure freezing; thirdly, we take advantage of a specimen carrier that allows for an upside-down placing of sapphire discs without a second carrier or spacer ring to close the "sandwich"; and fourthly, we use histological dyes to stain DNA/chromatin during freeze-substitution. Out of 14 tested histological dyes, we routinely use four of them for visual inspection of mitotic cells by light microscopy. Applying this streamlined workflow, HeLa cells at different stages of mitosis can be selected for further ultrastructural analysis. The practical aspects of this approach will be discussed herein.


Assuntos
Corantes , Ensaios de Triagem em Larga Escala , Animais , Substituição ao Congelamento , Células HeLa , Humanos , Microscopia Eletrônica
16.
Front Cell Dev Biol ; 8: 586880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240884

RESUMO

The endosomal sorting complex required for transport (ESCRT) mediates cellular processes that are related to membrane remodeling, such as multivesicular body (MVB) formation, viral budding and cytokinesis. Abscission is the final stage of cytokinesis that results in the physical separation of the newly formed two daughter cells. Although abscission has been investigated for decades, there are still fundamental open questions related to the spatio-temporal organization of the molecular machinery involved in this process. Reviewing knowledge obtained from in vitro as well as in vivo experiments, we give a brief overview on the role of ESCRT components in abscission mainly focussing on mammalian cells.

17.
Elife ; 92020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966209

RESUMO

The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.


Assuntos
Caenorhabditis elegans , Tamanho Celular , Microtúbulos , Fuso Acromático , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Evolução Molecular , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Fenótipo , Fuso Acromático/química , Fuso Acromático/genética , Fuso Acromático/metabolismo
18.
Front Cell Dev Biol ; 8: 648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793595

RESUMO

The lipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEth) are normally asymmetrically localized to the cytosolic face of membrane bilayers, but can both be externalized during diverse biological processes, including cell division, cell fusion, and cell death. Externalized lipids in the plasma membrane are recognized by lipid-binding proteins to regulate the clearance of cell corpses and other cell debris. However, it is unclear whether PtdSer and PtdEth contribute in similar or distinct ways to these processes. We discovered that disruption of the lipid flippases that maintain PtdSer or PtdEth asymmetry in the plasma membrane have opposite effects on phagocytosis in Caenorhabditis elegans embryos. Constitutive PtdSer externalization caused by disruption of the major PtdSer flippase TAT-1 led to increased phagocytosis of cell debris, sometimes leading to two cells engulfing the same debris. In contrast, PtdEth externalization caused by depletion of the major PtdEth flippase TAT-5 or its activator PAD-1 disrupted phagocytosis. These data suggest that PtdSer and PtdEth externalization have opposite effects on phagocytosis. Furthermore, externalizing PtdEth is associated with increased extracellular vesicle release, and we present evidence that the extent of extracellular vesicle accumulation correlates with the extent of phagocytic defects. Thus, a general loss of lipid asymmetry can have opposing impacts through different lipid subtypes simultaneously exerting disparate effects.

19.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32271860

RESUMO

The nuclear permeability barrier depends on closure of nuclear envelope (NE) holes. Here, we investigate closure of the NE opening surrounding the meiotic spindle in C. elegans oocytes. ESCRT-III components accumulate at the opening but are not required for nuclear closure on their own. 3D analysis revealed cytoplasmic membranes directly adjacent to NE holes containing meiotic spindle microtubules. We demonstrate that the NE protein phosphatase, CNEP-1/CTDNEP1, controls de novo glycerolipid synthesis through lipin to prevent invasion of excess ER membranes into NE holes and a defective NE permeability barrier. Loss of NE adaptors for ESCRT-III exacerbates ER invasion and nuclear permeability defects in cnep-1 mutants, suggesting that ESCRTs restrict excess ER membranes during NE closure. Restoring glycerolipid synthesis in embryos deleted for CNEP-1 and ESCRT components rescued NE permeability defects. Thus, regulating the production and feeding of ER membranes into NE holes together with ESCRT-mediated remodeling is required for nuclear closure.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Lipídeos/genética , Proteínas de Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Animais , Cromatina/genética , Retículo Endoplasmático/genética , Células HeLa , Humanos , Lipídeos/biossíntese , Camundongos , Microtúbulos/genética , Mitose/genética , Membrana Nuclear/metabolismo , Compostos Orgânicos , Fuso Acromático/genética
20.
Elife ; 92020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32149606

RESUMO

Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a 'tug of war' reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.


Assuntos
Pareamento Cromossômico/fisiologia , Segregação de Cromossomos/fisiologia , Meiose/fisiologia , Espermatócitos/fisiologia , Fuso Acromático/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , Masculino , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...