Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7932, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404966

RESUMO

Cassini's Grand Finale orbits provided for the first time in-situ measurements of Saturn's topside ionosphere. We present the Pedersen and Hall conductivities of the top near-equatorial dayside ionosphere, derived from the in-situ measurements by the Cassini Radio and Wave Plasma Science Langmuir Probe, the Ion and Neutral Mass Spectrometer and the fluxgate magnetometer. The Pedersen and Hall conductivities are constrained to at least 10-5-10-4 S/m at (or close to) the ionospheric peak, a factor 10-100 higher than estimated previously. We show that this is due to the presence of dusty plasma in the near-equatorial ionosphere. We also show the conductive ionospheric region to be extensive, with thickness of 300-800 km. Furthermore, our results suggest a temporal variation (decrease) of the plasma densities, mean ion masses and consequently the conductivities from orbit 288 to 292.

2.
Science ; 308(5724): 986-9, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15894529

RESUMO

The Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe (LP) sensor observed the cold plasma environment around Titan during the first two flybys. The data show that conditions in Saturn's magnetosphere affect the structure and dynamics deep in the ionosphere of Titan. The maximum measured ionospheric electron number density reached 3800 per cubic centimeter near closest approach, and a complex chemistry was indicated. The electron temperature profiles are consistent with electron heat conduction from the hotter Titan wake. The ionospheric escape flux was estimated to be 10(25) ions per second.


Assuntos
Saturno , Atmosfera , Meio Ambiente Extraterreno , Íons , Magnetismo , Astronave , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...