Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0024624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38597658

RESUMO

Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.


Assuntos
Plasmídeos , Shewanella , Plasmídeos/genética , Shewanella/virologia , Shewanella/genética , Inovirus/genética , Vírus Satélites/genética , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação
2.
Cell Insight ; 3(3): 100161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646547

RESUMO

Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.

3.
Fitoterapia ; 175: 105904, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508498

RESUMO

Three novel derivatives of microporenic acid, microporenic acids H-J, were identified from submerged cultures of a Lentinus species obtained from a basidiome collected during a field trip in the tropical rainforest in Western Kenya. Their structures were elucidated via HR-ESIMS spectra and 1D/2D NMR spectroscopic analyses, as well as by comparison with known derivatives. Applying biofilm assays based on crystal violet staining and confocal microscopy, two of these compounds, microporenic acids H and I, demonstrated the ability to inhibit biofilm formation of the opportunistic pathogen Staphylococcus aureus. Thereby, they were effective in a concentration range that did not affect planktonic growth. Additionally, microporenic acid I enhanced the anti-biofilm activity of the antibiotics vancomycin and gentamicin when used in combination. This opens up possibilities for the use of these compounds in combination therapy to prevent the formation of S. aureus biofilms.

4.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451943

RESUMO

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Assuntos
Proteômica , Pseudomonas aeruginosa , Virulência/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Bactérias/metabolismo
5.
Methods Mol Biol ; 2751: 219-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265719

RESUMO

Rhizobia are a group of soil proteobacteria that are able to establish a symbiotic interaction with legumes. These bacteria are capable to fix atmospheric nitrogen into ammonia within specific plant root organs called nodules. The rhizobia-legume interaction is established by a complex molecular dialogue that starts with flavonoids exudated by the plant roots. In response, signaling molecules known as Nod factors (NFs) are secreted by the bacteria. These factors are sensed by specific plant receptors that trigger a downstream signaling cascade leading to rhizobium-specific intracellular colonization of the root hair via the formation of infection threads and the eventual development of nodules on roots. In these organs, rhizobia can fix nitrogen from the atmosphere for the plant in exchange for photosynthates and the appropriate environment for nitrogen fixation. Recently, it has been demonstrated that extracellular membrane vesicles (EMVs) produced by some rhizobia carry NFs. EMVs are proteolipidic structures that are secreted to the milieu from the bacterial membranes and are involved in several important biological processes, including intercellular communication. Thus far, little is known about rhizobia vesicles, and further studies are needed to understand their functions, including their role as transporting vessels of signaling molecules during the process of symbiosis. Here, we present a detailed protocol to isolate high-purity EMVs from free-living cultured rhizobia, test their integrity, and quantify their abundance.


Assuntos
Fabaceae , Rhizobium , Condições Sociais , Membranas , Transporte Biológico , Nitrogênio
6.
Methods Mol Biol ; 2751: 229-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265720

RESUMO

Extracellular-membrane vesicles (EMVs) are spherical buds of the extracellular membrane, commonly produced by Gram-negative bacteria, known to mediate intricate inter-kingdom communication. In this context, comprehensive research dissecting the role of EMVs in one of the most complex nature-occurring molecular dialogues, rhizobium-legume symbiosis, has been so far neglected. During the different stages of the symbiotic process, rhizobia and their host plants establish a very specific and controlled intercellular trafficking of signal molecules. Thus, as conveyors of a broad range of molecules into the target cell, EMVs are gaining weight in the field. Here, we describe a detailed protocol to isolate EMVs from bacteroids of legume nodules, opening a new door for discovering new authors of the symbiotic process.


Assuntos
Vesículas Extracelulares , Fabaceae , Rhizobium , Membranas , Simbiose , Verduras
7.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067103

RESUMO

Bacterial membrane vesicles (BMVs) are produced by most bacteria and participate in various cellular processes, such as intercellular communication, nutrient exchange, and pathogenesis. Notably, these vesicles can contain virulence factors, including toxic proteins, DNA, and RNA. Such factors can contribute to the harmful effects of bacterial pathogens on host cells and tissues. Although the general effects of BMVs on host cellular physiology are well known, the underlying molecular mechanisms are less understood. In this study, we introduce a vesicle quantification method, leveraging the membrane dye FM4-64. We utilize a linear regression model to analyze the fluorescence emitted by stained vesicle membranes to ensure consistent and reproducible vesicle-host interaction studies using cultured cells. This method is particularly valuable for identifying host cellular processes impacted by vesicles and their specific cargo. Moreover, it outcompetes unreliable protein concentration-based methods. We (1) show a linear correlation between the number of vesicles and the fluorescence signal emitted from the FM4-64 dye; (2) introduce the "vesicle load" as a new semi-quantitative unit, facilitating more reproducible vesicle-cell culture interaction experiments; (3) show that a stable vesicle load yields consistent host responses when studying vesicles from Pseudomonas aeruginosa mutants; (4) demonstrate that typical vesicle isolation contaminants, such as flagella, do not significantly skew the metabolic response of lung epithelial cells to P. aeruginosa vesicles; and (5) identify inositol monophosphatase 1 (SuhB) as a pivotal regulator in the vesicle-mediated pathogenesis of P. aeruginosa.


Assuntos
Bactérias , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/metabolismo , Células Cultivadas , Técnicas de Cultura de Células , Mamíferos
8.
iScience ; 26(11): 108109, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867936

RESUMO

The host-microbiome associations occurring on the skin of vertebrates significantly influence hosts' health. However, the factors mediating their interactions remain largely unknown. Herein, we used integrated technical and ecological frameworks to investigate the skin metabolites sustaining a beneficial symbiosis between tree frogs and bacteria. We characterize macrocyclic acylcarnitines as the major metabolites secreted by the frogs' skin and trace their origin to an enzymatic unbalance of carnitine palmitoyltransferases. We found that these compounds colocalize with bacteria on the skin surface and are mostly represented by members of the Pseudomonas community. We showed that Pseudomonas sp. MPFS isolated from frogs' skin can exploit acylcarnitines as its sole carbon and nitrogen source, and this metabolic capability is widespread in Pseudomonas. We summarize frogs' multiple mechanisms to filter environmental bacteria and highlight that acylcarnitines likely evolved for another function but were co-opted to provide nutritional benefits to the symbionts.

9.
J Fungi (Basel) ; 9(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37504715

RESUMO

The two fungal human pathogens, Candida auris and Candida albicans, possess a variety of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to assess the inhibition of biofilm formation, while complementary microscopic techniques, such as confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris within a concentration range not affecting host cells, making it a promising candidate for therapeutic intervention in the future.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37252858

RESUMO

Strain 0141_2T was isolated from a temperate grassland soil in Germany and was found to be affiliated with the order Solirubrobacterales. It is most closely related to Baekduia soli BR7-21T, with 98.1 % 16S rRNA gene sequence similarity. Cells are rod-shaped, non-motile, stain Gram-positive and can have multiple vesicles in the cell surface. Polyhydroxybutyrate is accumulated within the cells. Catalase- and oxidase-positive. It is a mesophilic aerobe and grows best around neutral to slightly acidic pH in R2A medium. The major fatty acids are C18 : 1 ω9c, iso-C16 : 0, C18 : 0, C16 : 0, C16 : 1 ω7c and C17 : 1 ω8c. Diphosphatidylglycerol is present. The predominant respiratory quinone is MK-7(H4). Meso-diaminopimelic acid is the diagnostic diamino acid in the cell-wall peptidoglycan. The G+C content of genomic DNA is 72.9 mol%. Based on the results of phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the novel species Baekduia alba sp. nov. with the type strain 0141_2T (=DSM 104299T=LMG 30000T=CECT 9239T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Pradaria , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Bactérias/genética , Microbiologia do Solo
11.
Cell Host Microbe ; 31(5): 734-750.e8, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098342

RESUMO

Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Suínos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle
12.
mSystems ; 8(2): e0113022, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786632

RESUMO

Bacteria either duplicate their chromosome once per cell division or a new round of replication is initiated before the cells divide, thus cell cycles overlap. Here, we show that the opportunistic pathogen Pseudomonas aeruginosa switches from fast growth with overlapping cell cycles to sustained slow growth with only one replication round per cell division when cultivated under standard laboratory conditions. The transition was characterized by fast-paced, sequential changes in transcriptional activity along the ori-ter axis of the chromosome reflecting adaptation to the metabolic needs during both growth phases. Quorum sensing (QS) activity was highest at the onset of the slow growth phase with non-overlapping cell cycles. RNA sequencing of subpopulations of these cultures sorted based on their DNA content, revealed a strong gene dosage effect as well as specific expression patterns for replicating and nonreplicating cells. Expression of flagella and mexE, involved in multidrug efflux was restricted to cells that did not replicate, while those that did showed a high activity of the cell division locus and recombination genes. A possible role of QS in the formation of these subpopulations upon switching to non-overlapping cell cycles could be a subject of further research. IMPORTANCE The coordination of gene expression with the cell cycle has so far been studied only in a few bacteria, the bottleneck being the need for synchronized cultures. Here, we determined replication-associated effects on transcription by comparing Pseudomonas aeruginosa cultures that differ in their growth mode and number of replicating chromosomes. We further show that cell cycle-specific gene regulation can be principally identified by RNA sequencing of subpopulations from cultures that replicate only once per cell division and that are sorted according to their DNA content. Our approach opens the possibility to study asynchronously growing bacteria from a wide phylogenetic range and thereby enhance our understanding of the evolution of cell cycle control on the transcriptional level.


Assuntos
Pseudomonas aeruginosa , Transcriptoma , Pseudomonas aeruginosa/genética , Filogenia , Divisão Celular/genética , DNA/metabolismo
13.
Infect Immun ; 90(11): e0027622, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314784

RESUMO

The peptidyl-prolyl-cis/trans-isomerase (PPIase) macrophage infectivity potentiator (Mip) contributes to the pathogenicity and fitness of L. pneumophila, the causative agent of Legionnaires' disease. Here, we identified the stringent starvation protein SspB, hypothetical protein Lpc2061, and flagellin FlaA as bacterial interaction partners of Mip. The macrolide FK506, which inhibits the PPIase activity of Mip, interfered with the binding of Lpc2061. Moreover, we demonstrated that the N-terminal dimerization region and amino acid Y185 in the C-terminal PPIase domain of Mip are required for the binding of Lpc2061 and FlaA. The modeling of the interaction partners and global docking with Mip suggested nonoverlapping binding interfaces, and a molecular dynamic simulation predicted an increased stability for the tripartite interaction of Lpc2061, Mip, and FlaA. On the functional level, we demonstrated that Mip promotes L. pneumophila flagellation, which is positively influenced by the binding of Lpc2061 and reduced by FK506. Also, L. pneumophila mutants expressing the Y185A or the monomeric Mip variant, which bind less Lpc2061, were nonmotile, were less flagellated, and yielded less FlaA when quantified. To our knowledge, this is the first report in which a PPIase and its bacterial interaction partners were demonstrated to influence flagellation.


Assuntos
Proteínas de Bactérias , Flagelos , Legionella pneumophila , Macrófagos , Peptidilprolil Isomerase , Humanos , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Peptidilprolil Isomerase/metabolismo , Tacrolimo , Flagelos/metabolismo
14.
mBio ; 13(5): e0231622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102512

RESUMO

Staphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence. Therefore, interfering with S. aureus intracellular persistence is key to treatment success. In this study, we used a S. aureus strain carrying the reporter mKikumeGR that enables the monitoring of the metabolic status of intracellular bacteria to achieve a better understanding of the molecular mechanisms facilitating S. aureus survival and persistence within macrophages. We found that shortly after bacteria internalization, a large fraction of macrophages harbored mainly S. aureus with high metabolic activity. This population decreased gradually over time with the concomitant increase of a macrophage subpopulation harboring S. aureus with low metabolic activity, which prevailed at later times. A dual RNA-seq analysis performed in each macrophage subpopulation showed that the host transcriptional response was similar between both subpopulations. However, intracellular S. aureus exhibited disparate gene expression profiles depending on its metabolic state. Whereas S. aureus with high metabolic activity exhibited a greater expression of genes involved in protein synthesis and proliferation, bacteria with low metabolic activity displayed a higher expression of oxidative stress response-related genes, silenced genes involved in energy-consuming processes, and exhibited a dormant-like state. Consequently, we propose that reducing metabolic activity and entering into a dormant-like state constitute a survival strategy used by S. aureus to overcome the adverse environment encountered within macrophages and to persist in the intracellular niche. IMPORTANCE The capacity of Staphylococcus aureus to survive and persist within phagocytic cells has been associated with antibiotic treatment failure and recurrent infections. Here, we investigated the molecular mechanisms leading to S. aureus persistence within macrophages using a reporter system that enables to distinguish between intracellular bacteria with high and low metabolic activity in combinstion with a dual RNA-seq approach. We found that with the progression of infection, intracellular S. aureus transitions from a high metabolic state to a low metabolic dormant-like state by turning off major energy-consuming processes while remaining viable. This process seems to be driven by the level of stress encountered in the intracellular niche. Our study indicates that effective therapies by which to treat S. aureus infections should be able to target not only high metabolic bacteria but also intracellular dormant-like S. aureus.


Assuntos
Fenômenos Bioquímicos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/microbiologia , Macrófagos/microbiologia , Antibacterianos
15.
Artigo em Inglês | MEDLINE | ID: mdl-36018778

RESUMO

The order Solirubrobacterales is a deep-branching lineage within the phylum Actinomycetota. Most representatives have been isolated from terrestrial environments. A strain isolated from a grassland soil was found to be affiliated with this order and therefore characterized by a polyphasic approach. Cells of strain 0166_1T are Gram-positive, short rods, non-motile, non-spore-forming and divide by binary fission. A surface layer with protrusions covers the majority of the cells. Strain 0166_1T grows optimally around neutral to slightly alkaline pH (pH 7.1-7.9) and at temperatures between 24-36 °C in SSE/HD 1 : 10 medium. It grows optimally with 0-0.5% NaCl (w/v) but can withstand concentrations up to 5 %. The major fatty acids are C18 : 1 ω9c, C16 : 1 ω7c, C17 : 0 cyclo ω7c, C18 : 1 ω7c methyl and C19 : 0 cyclo ω9c. The major polar lipids are diphosphatidylglycerol, two unidentified phospholipids and one unidentified glycolipid. MK-7(H4) and MK-7(H2) are the predominant respiratory quinones. meso-2,6-Diaminopimelic acid is the diagnostic diamino acid in the cell-wall peptidoglycan. The G+C content for strain 0166_1T is 72.8 mol%. 16S rRNA gene sequence analysis indicated that this bacterium was related to Conexibacter arvalis KV-962T and Conexibacter stalactiti YC2-25T with 95.5 and 95.2 % sequence similarity, respectively. Based on the phenotypic, genomic and phylogenetic data, we propose the novel species Capillimicrobium parvum sp. nov. (type strain 0166_1T=DSM 104329T=LMG 29999T=CECT 9240T) of the novel genus Capillimicrobium gen. nov. within the novel family Capillimicrobiaceae fam. nov.


Assuntos
Pradaria , Solo , Bactérias , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971979

RESUMO

Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP.


Assuntos
Actinas , Pseudópodes , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Movimento Celular/fisiologia , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
17.
Arch Microbiol ; 204(8): 488, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835967

RESUMO

Three new bacterial strains, WHY3T, WH131T, and WH158T, were isolated and described from the hemolymph of the Pacific oyster Crassostrea gigas utilizing polyphasic taxonomic techniques. The 16S rRNA gene sequence analysis revealed that strain WHY3T was a member of the genus Winogradskyella, whereas strains WHI31T and WH158T were members of the genus Erythrobacter. According to the polygenomic study the three strains formed individual lineages with strong bootstrap support. The comparison of dDDH-and ANI values, percentage of conserved proteins (POCP), and average amino acid identity (AAl) between the three strains and their relatives established that the three strains represented two separate genera. Menaquinone-6 was reported as the major respiratory quinone in strain WHY3T and Ubiquinone-10 for strains WH131T and WH158T, respectively. The major cellular fatty acids for strain WHY3T were C15:0, anteiso-C15:1 ω7c, iso-C15:0, C16:1ω7c. The major cellular fatty acids for strains WH131T and WH158T were C14:02-OH and t18:1ω12 for WH131T and C17:0, and C18:1ω7c for strain WH158T. Positive Sudan Black B staining Indicated the presence of polyhydroxyalkanoic acid granules for strains WH131T and WH158T but not for strain WHY3T. The DNA G + C contents of strains WHY3T, WH131T and WH158T were 34.4, 59.7 and 56.6%, respectively. Gene clusters predicted some important genes involved in the bioremediation process. Due to the accomplishment of polyphasic taxonomy, we propose three novel species Winogradskyella luteola sp.nov. (type strain WHY3T = DSM 111804T = NCCB 100833T), Erythrobacter ani sp.nov. (WH131T = DSM 112099T = NCCB 100824T) and Erythrobacter crassostrea sp.nov. (WH158T = DSM 112102T = NCCB 100877T).


Assuntos
Crassostrea , Flavobacteriaceae , Sphingomonadaceae , Animais , Técnicas de Tipagem Bacteriana , Crassostrea/genética , Crassostrea/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Hemolinfa , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Curr Microbiol ; 79(8): 219, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704100

RESUMO

Cream colored bacteria from marine agar, strain WH24, WH77, and WH80 were isolated from the gill of the Crassostrea gigas a Pacific oyster with a filter-feeding habit that compels accompanying bacteria to demonstrate a high metabolic capacity, has proven able to colonize locations with changing circumstances. Based on the 16S rRNA gene sequence, all strains had high similarity to Photobacterium arenosum CAU 1568T (99.72%). This study involved phenotypic traits, phylogenetic analysis, antimicrobial activity evaluation, genome mining, Co-cultivation experiments, and chemical studies of crude extracts using HPLC and LC-HRESIMS. Photobacterium arenosum WH24 and Zooshikella harenae WH53Twere co-cultivated for 3 days in a rotary shaker at 160 rpm at 30 °C, and LC-MS monitored the chemical profiles of the co-cultures on the third day. The UV chromatograms of the extracts of the co-cultivation experiments show that Zooshikella harenae WH53T could be inhibited by strain WH24. The high virulence of Photobacterium arenosum WH24 was confirmed by genome analysis. Gene groups with high virulence potential were detected: tssA (ImpA), tssB (ImpB/vipA), tssC (ImpC/vipB), tssE, tssF (ImpG/vasA), tssG (ImpH/vasB), tssM (IcmF/vasK), tssJ (vasD), tssK (ImpJ/vasE), tssL (ImpK/vasF), clpV (tssH), vasH, hcp, lapP, plpD, and tpsB family.


Assuntos
Crassostrea , Animais , Crassostrea/microbiologia , Brânquias , Mar do Norte , Photobacterium/genética , Filogenia , RNA Ribossômico 16S/genética , Virulência
19.
Cells ; 11(11)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681466

RESUMO

Mitochondrial functionality is crucial for the execution of physiologic functions of metabolically active cells in the respiratory tract including airway epithelial cells (AECs). Cigarette smoke is known to impair mitochondrial function in AECs. However, the potential contribution of mitochondrial dysfunction in AECs to airway infection and airway epithelial barrier dysfunction is unknown. In this study, we used an in vitro model based on AECs exposed to cigarette smoke extract (CSE) followed by an infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress as an indicator of mitochondrial stress were quantified upon CSE and Sp treatment. In addition, expression of proteins associated with mitophagy, mitochondrial content, and biogenesis as well as mitochondrial fission and fusion was quantified. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with indices of mitochondrial function. We observed that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp.


Assuntos
Fumar Cigarros , Streptococcus pneumoniae , Brônquios/metabolismo , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Streptococcus pneumoniae/metabolismo , Nicotiana/efeitos adversos , Nicotiana/metabolismo
20.
Cells ; 11(10)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626674

RESUMO

Group B streptococci (GBS) cause a range of invasive maternal-fetal diseases during pregnancy and post-partum. However, invasive infections in non-pregnant adults are constantly increasing. These include sepsis and streptococcal toxic shock syndrome, which are often complicated by systemic coagulation and thrombocytopenia. GBS express a hyper-hemolytic ornithine rhamnolipid pigment toxin with cytolytic and coagulatory activity. Here, we investigated the effects of GBS pigment on human platelets. Infections of platelets with pigmented GBS resulted initially in platelet activation, followed by necrotic cell death. Thus, this study shows that GBS pigment kills human platelets.


Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Adulto , Feminino , Hemólise , Humanos , Pigmentação , Ativação Plaquetária , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...