Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
2.
J Med Chem ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712838

RESUMO

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.

3.
Quant Imaging Med Surg ; 14(5): 3643-3654, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720845

RESUMO

Background: A prenatal fetal mediastinal cyst is a benign disease. However, if a cyst enlargement grows, it may compress the adjacent organs and affect the fetal cardiopulmonary function. This study aimed to compare and analyze the prenatal ultrasound characteristics of different mediastinal cysts, and to evaluate the pregnancy outcome of the fetus and the factors affecting the prognostic of the fetus. To compare and analyze the prenatal ultrasound characteristics of different types of mediastinal cysts, and to evaluate the fetal pregnancy outcome and the influencing factors of fetal prognosis. Methods: A retrospective analysis of patients with prenatal diagnoses of mediastinal cysts was conducted to evaluate the ultrasound characteristics and to monitor the pregnancy outcomes to identify prognostic influences and provide a reliable basis for patient prognosis. Results: In total, 30 patients were diagnosed with mediastinal cysts [including bronchogenic cysts (n=12), esophageal cysts (n=9), pericardial cysts (n=5), and thymic cysts (n=4)] on prenatal ultrasonography. The diagnostic accuracy rate was 93.33%; two cases of esophageal cysts were misdiagnosed as bronchial cysts. In total, 4 (44.44%) of 9 esophageal cysts and 4 thymic cysts were located in the anterior mediastinum, 10 (83.33%) of 12 bronchogenic cysts and 5 pericardial cysts were located in the middle mediastinum, and 2 (16.67%) of 12 bronchogenic cysts and 5 (55.56%) of 9 esophageal cysts were located in the posterior mediastinum. There were significant differences in the distribution of the cyst location, morphology, and cyst wall thickness (P<0.05). After delivery, 17 patients had clinical symptoms. There was a significant difference in the clinical symptoms between patients with a maximum diameter of postpartum cysts <5 and ≥5 cm (P<0.05), and children with a low gestational age and birth weight were more likely to have clinical symptoms. Conclusions: The prenatal ultrasound features of fetal mediastinal cysts were similar. However, the ultrasound characteristics related to the cyst location, morphology, and cyst wall thickness were helpful in providing an accurate diagnosis. In addition, the postpartum cyst size, location, adjacent relationship with the surrounding tissues, volume, gestational age, and weight were related to patient prognosis.

6.
Curr Med Imaging ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676486

RESUMO

Background: Congenital enterocolic fistula, an abnormal connection between the small intestine and the colon, is a rare condition with the potential for significant complications affecting the patient's quality of life. Case Report: A 2 year and 7 months old girl presented with abdominal pain and diarrhea lasting more than 10 days. The formation of the intestinal fistula was first detected by ultrasound, and the blood flow in the intestinal wall was preliminally analyzed. Surgical exploration revealed a colonic fistula formed by the attachment of the jejunum to the descending colon. Postoperatively, symptoms improved; no secondary infection occurred and the fistula healed well. Conclusion: Congenital colon fistula is rarely reported, and ultrasound is becoming more and more important in its diagnosis. Here, we report a case of congenital colonic fistula diagnosed by ultrasound. Ultrasound can dynamically and in real-time observe the intestinal condition, which is conducive to the early diagnosis and staging of congenital intestinal diseases and the determination of diagnosis and treatment schemes.

.

7.
J Hazard Mater ; 470: 134301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626681

RESUMO

Carbendazim residue has been widely concerned, and nitrous oxide (N2O) is one of the dominant greenhouse gases. Microbial metabolisms are fundamental processes of removing organic pollutant and producing N2O. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can change soil abiotic properties and microbial communities and simultaneously affect carbendazim degradation and N2O emission. In this study, the comprehensive linkages among carbendazim residue, N2O emission and microbial community after the DMPP application were quantified under different soil moistures. Under 90% WHC, the DMPP application significantly reduced carbendazim residue by 54.82% and reduced soil N2O emission by 98.68%. The carbendazim residue was negatively related to soil ammonium nitrogen (NH4+-N), urease activity, and ratios of Bacteroidetes, Thaumarchaeota and Nitrospirae under 90% WHC, and the N2O emission was negatively related to NH4+-N content and relative abundance of Acidobacteria under the 60% WHC condition. In the whole (60% and 90% WHC together), the carbendazim residue was negatively related to the abundances of nrfA (correlation coefficient = -0.623) and nrfH (correlation coefficient = -0.468) genes. The hao gene was negatively related to the carbendazim residue but was positively related to the N2O emission rate. The DMPP application had the promising potential to simultaneously reduce ecological risks of fungicide residue and N2O emission via altering soil abiotic properties, microbial activities and communities and functional genes. ENVIRONMENTAL IMPLICATION: Carbendazim was a high-efficiency fungicide that was widely used in agricultural production. Nitrous oxide (N2O) is the third most important greenhouse gas responsible for global warming. The 3, 4-dimethylpyrazole phosphate (DMPP) is an effective nitrification inhibitor widely used in agricultural production. This study indicated that the DMPP application reduced soil carbendazim residues and N2O emission. The asymmetric linkages among the carbendazim residue, N2O emission, microbial community and functional gene abundance were regulated by the DMPP application and soil moisture. The results could broaden our horizons on the utilizations DMPP in decreasing fungicide risks and N2O emission.


Assuntos
Carbamatos , Fungicidas Industriais , Microbiota , Nitrificação , Óxido Nitroso , Pirazóis , Microbiologia do Solo , Poluentes do Solo , Óxido Nitroso/análise , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Benzimidazóis , Solo/química , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Água/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-38662416

RESUMO

Electron-beam-evaporated nickel oxide (NiOx) films are known for their high quality, precise control, and suitability for complex structures in perovskite (PVK) solar cells (PSCs). However, untreated NiOx films have inherent challenges, such as surface defects, relatively low intrinsic conductivity, and shallow valence band maximum, which seriously restrict the efficiency and stability of the devices. To address these challenges, we employ a dual coordination optimization strategy. The strategy includes low heating rate annealing of NiOx films and using an aminoguanidine nitrate spin coating process on the surfaces of NiOx films to strategically modify NiOx films itself and the interface of NiOx/PVK. Under the synergistic effect of this dual optimization method, the quality of the films is significantly improved and its p-type characteristics are enhanced. At the same time, the interface defects and energy level alignment of the films are effectively improved, and the charge extraction ability at the interface is improved. The combined treatment significantly improved the efficiency of inverted PSCs, from 17.85% to 20.31%, and enhanced device stability under various conditions. This innovative dual-coordinated optimization strategy provides a clear and effective framework for improving the performance of NiOx films and inverted PSCs.

9.
Chembiochem ; : e202400105, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639074

RESUMO

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.

10.
Comput Biol Chem ; 110: 108088, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38685167

RESUMO

Cichorium glandulosum, a common traditional Chinese medicine used by Uyghur and Mongolian ethnic groups, is recognized for its potential to ameliorate metabolic disorders. However, the specific efficacy and mechanisms of Cichorium glandulosum in treating the comorbidity of hyperuricaemia and hyperlipidaemia remain unexplored. This study aims to explore the pharmacological effects and mechanisms of Cichorium glandulosum on this comorbidity through a combination of animal experiments, network pharmacology, and molecular docking techniques. A rat model of hyperuricaemia combined with hyperlipidaemia was established through a high-fat and high-purine diet, and the effective parts of the aqueous extract of Cichorium glandulosum to reduce uric acid and lipid levels were screened and the components of the parts were analysed by LC-MS/MS. The active components, core targets, and key pathways were analysed using network pharmacology and validated by molecular docking. Animal experimental results indicated that the n-butanol extract of Cichorium glandulosum showed a significant therapeutic effect on this comorbidity. Analysis of the n-butanol extract yielded 35 active ingredients and 138 intersecting targets related to diseases. Key targets identified through compound-target-pathway (C-T-P) and Protein-Protein Interaction (PPI) analyses included RELA, CASP3, PTGS2, TNF, and ESR1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed 2515 functional items and 164 pathways, respectively. Molecular docking demonstrated that isochlorogenic acid A, baicalin, chicoric acid, and lactucopicrin showed the highest binding affinity to RELA and PTGS2. The n-butanol fraction from the aqueous extract of Cichorium glandulosum was found to reduce uric acid and lipid levels effectively. In summary, Cichorium glandulosum has a therapeutic effect on hyperuricaemia combined with hyperlipidaemia through its multi-component, multi-target, and multi-pathway characteristics.

11.
Front Genet ; 15: 1364944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686025

RESUMO

Fructose-1, 6-bisphosphate aldolase (FBA) plays vital roles in plant growth, development, and response to abiotic stress. However, genome-wide identification and structural characterization of the potato (Solanum tuberosum L.) FBA gene family has not been systematically analyzed. In this study, we identified nine StFBA gene members in potato, with six StFBA genes localized in the chloroplast and three in the cytoplasm. The analysis of gene structures, protein structures, and phylogenetic relationships indicated that StFBA genes were divided into Class I and II, which exhibited significant differences in structure and function. Synteny analysis revealed that segmental duplication events promoted the expansion of the StFBA gene family. Promoter analysis showed that most StFBA genes contained cis-regulatory elements associated with light and stress responses. Expression analysis showed that StFBA3, StFBA8, and StFBA9 showing significantly higher expression levels in leaf, stolon, and tuber under blue light, indicating that these genes may improve photosynthesis and play an important function in regulating the induction and expansion of microtubers. Expression levels of the StFBA genes were influenced by drought and salt stress, indicating that they played important roles in abiotic stress. This work offers a theoretical foundation for in-depth understanding of the evolution and function of StFBA genes, as well as providing the basis for the genetic improvement of potatoes.

12.
Viruses ; 16(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675947

RESUMO

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Assuntos
Altitude , Microbioma Gastrointestinal , Metagenômica , Viroma , Animais , Suínos , Viroma/genética , Microbioma Gastrointestinal/genética , Tibet , Vírus/genética , Vírus/classificação , Metagenoma , Feminino , Genoma Viral
13.
Front Bioeng Biotechnol ; 12: 1377334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590605

RESUMO

Sinorhizobium fredii CCBAU45436 is an excellent rhizobium that plays an important role in agricultural production. However, there still needs more comprehensive understanding of the metabolic system of S. fredii CCBAU45436, which hinders its application in agriculture. Therefore, based on the first-generation metabolic model iCC541 we developed a new genome-scale metabolic model iAQY970, which contains 970 genes, 1,052 reactions, 942 metabolites and is scored 89% in the MEMOTE test. Cell growth phenotype predicted by iAQY970 is 81.7% consistent with the experimental data. The results of mapping the proteome data under free-living and symbiosis conditions to the model showed that the biomass production rate in the logarithmic phase was faster than that in the stable phase, and the nitrogen fixation efficiency of rhizobia parasitized in cultivated soybean was higher than that in wild-type soybean, which was consistent with the actual situation. In the symbiotic condition, there are 184 genes that would affect growth, of which 94 are essential; In the free-living condition, there are 143 genes that influence growth, of which 78 are essential. Among them, 86 of the 94 essential genes in the symbiotic condition were consistent with the prediction of iCC541, and 44 essential genes were confirmed by literature information; meanwhile, 30 genes were identified by DEG and 33 genes were identified by Geptop. In addition, we extracted four key nitrogen fixation modules from the model and predicted that sulfite reductase (EC 1.8.7.1) and nitrogenase (EC 1.18.6.1) as the target enzymes to enhance nitrogen fixation by MOMA, which provided a potential focus for strain optimization. Through the comprehensive metabolic model, we can better understand the metabolic capabilities of S. fredii CCBAU45436 and make full use of it in the future.

14.
mSystems ; : e0000424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591897

RESUMO

Seed endophytic microbiomes are shaped by host and environmental factors and play a crucial role in their host growth and health. Studies have demonstrated that host genotype, including hybridization, affects seed microbiomes. Heterosis features are also observed in root-associated microbiomes. It remains unclear, however, whether heterosis exists in seed endophytic microbiomes and whether hybrid microbiota provide noticeable advantages to host plant growth, especially to seed germination. Here, we investigated the structure of seed endophytic bacterial and fungal communities from three hybrid rice varieties and their respective parents using amplicon sequencing targeting 16S rRNA and ITS2 genes. Heterosis was found in diversity and composition of seed endophytic microbiomes in hybrids, which hosted more diverse communities and significantly higher abundances of plant growth-promoting taxa, such as Pseudomonas and Rhizobium genera compared with their parental lines. Co-occurrence network analysis revealed that there are potentially tighter microbial interactions in the hybrid seeds compared with their parent seeds. Finally, inoculation of seed-cultivable endophytes, isolated from hybrids, resulted in a greater promotion of seed germination compared with those isolated from parent lines. These findings suggest that heterosis exists not only in plant traits but also in seed endophytic microbiota, the latter in turn promotes seed germination, which offers valuable guidance for microbiome-assisted rice breeding.IMPORTANCEGenetic and physiological changes associated with plant hybridization have been studied for many crop species. Still, little is known about the impact of hybridization on the seed microbiota. In this study, we indicate that hybridization has a significant impact on the endophytic bacterial and fungal communities in rice seeds. The seed endophytic microbiomes of hybrids displayed distinct characteristics from those of their parental lines and exhibited potential heterosis features. Furthermore, the inoculation of seed-cultivable endophytes isolated from hybrids exhibited a greater promotion effect on seed germination compared with those isolated from the parents. Our findings make a valuable contribution to the emerging field of microbiome-assisted plant breeding, highlighting the potential for a targeted approach that aims to achieve not only desired plant traits but also plant-beneficial microbial communities on the seeds.

15.
Materials (Basel) ; 17(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38541424

RESUMO

Microbially induced calcite precipitation (MICP) is an emerging solidification method characterized by high economic efficiency, environmental friendliness, and durability. This study validated the reliability of the MICP sand solidification method by conducting a small-scale wind tunnel model test using aeolian sand solidified by MICP and analyzing the effects of wind velocity (7 m/s, 10 m/s, and 13 m/s), deflation angle (0°, 15°, 30°, and 45°), wind erosion cycle (1, 3, and 5), and other related factors on the mass loss rate of solidified aeolian sand. The microstructure of aeolian sand was constructed by performing mesoscopic and microscopic testing based on X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). According to the test results, the mass loss rate of solidified aeolian sand gradually increases with the increase in wind velocity, deflation angle, and wind erosion cycle. When the wind velocity was 13 m/s, the mass loss rate of the aeolian sand was only 63.6%, indicating that aeolian sand has excellent wind erosion resistance. CaCO3 crystals generated by MICP were mostly distributed on sand particle surfaces, in sand particle pores, and between sand particles to realize the covering, filling, and cementing effects.

16.
Water Res ; 255: 121514, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554633

RESUMO

The phosphorus-containing reagents have been proposed to remediate the uranium contaminated sites due to the formation of insoluble uranyl phosphate mineralization products. However, the colloids, including both pseudo and intrinsic uranium colloids, could disturb the environmental fate of uranium due to its nonnegligible mobility. In this work, the transport pattern and micro-mechanism of uranium coupled to phosphate and illite colloid (IC) were investigated by combining column experiments and micro-spectroscopic evidences. Results showed that uranium transport was facilitated in granular media by forming the intrinsic uranyl phosphate colloid (such as Na-autunite) when the pH > 3.5 and CNa+ < 10 mM. Meanwhile, the mobility of uranium depended greatly on the typical water chemistry parameters governing the aggregation and deposit of intrinsic uranium colloids. However, the attachment of phosphate on illite granule increased the repulsive force and enhanced the dispersion stability of IC in the IC-U(VI)-phosphate ternary system. The non-preequilibrium transport and retention profiles, HRTEM-mapping, as well as TRLFS spectra revealed that the IC enhanced uranium mobility by forming the ternary IC-uranyl phosphate hybrid, and acted as the coagulation preventing agent for uranyl phosphate particles. This observed facilitation of uranium transport resulted from the formation of intrinsic uranyl phosphate colloids and IC-uranyl phosphate hybrids should be taken into consideration when evaluating the potential risk of uranium migration and optimizing the in-situ mineralization remediation strategy for uranium contaminated environmental water.

17.
Hum Cell ; 37(3): 675-688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546949

RESUMO

Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.


Assuntos
Claudicação Intermitente , Proteínas Quinases p38 Ativadas por Mitógeno , Ratos , Animais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Apoptose/genética , Neurônios/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Hipóxia , RNA Mensageiro
18.
J Reprod Immunol ; 163: 104212, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38432052

RESUMO

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.

19.
Immunobiology ; 229(3): 152798, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537424

RESUMO

BACKGROUND: A growing body of experimental and clinical evidence has implicated gut microbiota in the onset and course of rheumatoid arthritis (RA). The imbalance of intestinal flora in RA patients may lead to abnormal expression of immune cells and related cytokines. PURPOSE: Conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and conventional synthetic disease-modifying antirheumatic drugs combined with biological disease-modifying antirheumatic drugs (csDMARDs + bDMARDs) are widely used to treat RA, but the characteristics of gut microbiota before and after treatment and their relationship with memory Tfh/B cells and cytokines remain unclear. METHODS: Stool samples were collected from 50 RA patients and 25 healthy controls (HCs) for 16SrRNA gene sequencing. We examined the proportion of lymphocyte subsets in healthy controls and RA patients. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of related cytokines in serum. The α and ß diversity of intestinal flora, and the correlation between intestinal flora and clinical indicators, lymphocyte subsets, cytokines were analyzed. RESULT: At the genus level, Ruminococcaceae_Ruminococcus was decreased in the csDMARDs and csDMARDs + bDMARDs treatment group, whereas Faecalibacterium was reduced in the csDMARDs treatment group, compared to untreated group. CD4+CD45RO+CCR7+CXCR5+central memory Tfh cells and CD4+CD45RO+CCR7-CXCR5+effector memory Tfh cells were significantly lower in the csDMARDs + bDMARDs treatment group than in untreated group. CD19+CD27+IgD+pre-switched memory B cells were higher in the csDMARDs and csDMARDs + bDMARDs treatment groups, whereas CD19+CD27+IgD-switched memory B cells were significantly lower than in untreated group. Ruminococcaceae_Ruminococcus was negatively correlated with CD19+CD27+IgD+ pre-switched memory B cells but positively correlated with CD4+CD45RO+CCR7-CXCR5+effector memory Tfh and CD19+CD27+IgD-switched memory B cells in patients with RA treated with DMARDs. CONCLUSION: The gut microbiota, memory Tfh cells, memory B cells, and cytokines of patients with RA changed significantly under different treatment regimens and had certain correlations with the clinical indicators of RA.

20.
Carbohydr Polym ; 333: 121952, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494217

RESUMO

Different types of clinical wounds are difficult to treat while infected by bacteria. Wound repair involves multiple cellular and molecular interactions, which is a complicated process. However, wound repair often suffers from abnormal cellular functions or pathways that result in unavoidable side effects, so there is an urgent need for a material that can heal wounds quickly and with few side effects. Based on these needs, hydrogels with injectable properties have been confirmed to be able to undergo self-healing, which provides favorable conditions for wound healing. Notably, as a biopolymer with excellent easy-to-modify properties from a wide range of natural sources, chitosan can be used to prepare injectable hydrogel with multifunction for wound healing because of its outstanding flowability and injectability. Especially, chitosan-based hydrogels with marked biocompatibility, non-toxicity, and bio-adhesion properties are ideal for facilitating wound healing. In this review, the characteristics and healing mechanisms of different wounds are briefly summarized. In addition, the preparation and characterization of injectable chitosan hydrogels in recent years are classified. Additionally, the bioactive properties of this type of hydrogel in vitro and in vivo are demonstrated, and future trend in wound healing is prospected.


Assuntos
Quitosana , Cicatrização , Hidrogéis/farmacologia , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...