Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 819, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993453

RESUMO

The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.


Assuntos
Código de Barras de DNA Taxonômico , Plantas , China , Florestas , Filogenia , Plantas/genética , Madeira
2.
Mol Ecol Resour ; 22(1): 319-333, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34233085

RESUMO

Phylogenetic trees have been extensively used in community ecology. However, how the phylogeny construction affects ecological inferences is poorly understood. In this study, we constructed three different types of phylogenetic trees (a synthetic-tree generated using V.PhyloMaker, a barcode-tree generated using rbcL+matK+trnH-psbA, and a plastome-tree generated from plastid genomes) that represented an increasing level of phylogenetic resolution among 580 woody plant species from six forest dynamic plots in subtropical evergreen broadleaved forests of China. We then evaluated the performance of each phylogeny in estimations of community phylogenetic structure, turnover and phylogenetic signal in functional traits. As expected, the plastome-tree was most resolved and most supported for relationships among species. For local phylogenetic structure, the three trees showed consistent results with Faith's PD and MPD; however, only the synthetic-tree produced significant clustering patterns using MNTD for some plots. For phylogenetic turnover, contrasting results between the molecular trees and the synthetic-tree occurred only with nearest neighbor distance. The barcode-tree agreed more with the plastome-tree than the synthetic-tree for both phylogenetic structure and turnover. For functional traits, both the barcode-tree and plastome-tree detected phylogenetic signal in maximum height, but only the plastome-tree detected signal in leaf width. This is the first study that uses plastid genomes in large-scale community phylogenetics. Our results highlight the improvement of plastome-trees over barcode-trees and synthetic-trees for the analyses studied here. Our results also point to the possibility of type I and II errors in estimation of phylogenetic structure and turnover and detection of phylogenetic signal when using synthetic-trees.


Assuntos
Florestas , China , Filogenia
3.
Mitochondrial DNA B Resour ; 6(7): 2022-2023, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34212084

RESUMO

Lithocarpus hancei (Benth.) Rehd is a widely distributed evergreen tree with broad-leaves that dominates the lower stories of the forest in China. Here, we sequenced and assembled the complete chloroplast genome of L. hancei. The genome is 161,304 bp with one large single copy (LSC: 90,585 bp), one small single copy (SSC: 18,959 bp), and two inverted repeat (IR) regions (IRa and IRb, each 25,880 bp). It contains 117 genes, including 80 protein-coding genes, 33 tRNA genes, and four rRNA genes. Phylogenetic analysis of 21 representative cp genomes of the Fagaceae suggests Lithocarpus is monophyletic with strong bootstrap support and also that L. hancei is closely related to L. polystachyus. The cp genome is important for constructing a robust phylogeny of Lithocarpus and Fagaceae for future study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...