Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516105

RESUMO

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Assuntos
Linfócitos T CD8-Positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Acetilação , Histonas/metabolismo , Corpos Cetônicos , Animais , Camundongos
2.
Elife ; 122023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261423

RESUMO

CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.


Assuntos
Ácido Aspártico , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/patologia , Animais , Camundongos
3.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333111

RESUMO

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

4.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230079

RESUMO

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Autoimunidade , Linfócitos T , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Hipoglicemiantes/farmacologia
5.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066282

RESUMO

Chronic high-fat feeding triggers widespread metabolic dysfunction including obesity, insulin resistance, and diabetes. While these ultimate pathological states are relatively well understood, we have a limited understanding of how high-fat intake first triggers physiological changes. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on spatial and learning memory. Acute high-fat intake increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation, fission and metabolic skewing towards aerobic glycolysis. These effects are generalized, detectable in the hypothalamus, hippocampus, and cortex all within 1-3 days of HFD exposure. In vivo microglial ablation and conditional DRP1 deletion experiments show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via ß-oxidation, microglia shunt a substantial fraction of palmitate towards anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuro-protective metabolite itaconate. Together, these data identify microglial cells as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons instead as alternate bioenergetic and protective substrates. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.

6.
Sci Rep ; 12(1): 16028, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163487

RESUMO

Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-ß (IFN-ß), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1ß (PGC-1ß), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-ß, when OXPHOS is maintained. We examined the role of PGC-1ß in bioenergetic metabolism of DCs and found that PGC-1ß deficiency indeed impairs their mitochondrial respiration. PGC-1ß-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1ß deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-ß treatment. Loss of PGC-1ß in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1ß is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.


Assuntos
Lipopolissacarídeos , PPAR gama , Trifosfato de Adenosina , Expressão Gênica , Interferon beta/genética , Interferon beta/metabolismo , Lipopolissacarídeos/farmacologia , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Cell Metab ; 34(9): 1298-1311.e6, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981545

RESUMO

How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.


Assuntos
Linfócitos T CD8-Positivos , Carbono , Linfócitos T CD8-Positivos/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Nutrientes
8.
Cell Rep ; 38(9): 110446, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235777

RESUMO

The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8+ T cell homeostasis. We further identify creatine kinase B (CKB) as the creatine kinase isoenzyme that supports these T cell properties. Loss of the creatine transporter (Slc6a8) or Ckb results in compromised CD8+ T cell expansion in response to infection without influencing adenylate energy charge. Rather, loss of Slc6a8 or Ckb disrupts naive T cell homeostasis and weakens TCR-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling required for CD8+ T cell expansion. These data demonstrate a cell-intrinsic role for creatine transport and creatine transphosphorylation, independent of their effects on global cellular energy charge, in supporting CD8+ T cell homeostasis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Creatina , Creatina/metabolismo , Creatina Quinase/metabolismo , Fosforilação , Transdução de Sinais
9.
Nat Protoc ; 16(9): 4494-4521, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34349284

RESUMO

T cells are integral players in the adaptive immune system that readily adapt their metabolism to meet their energetic and biosynthetic needs. A major hurdle to understand physiologic T-cell metabolism has been the differences between in vitro cell culture conditions and the complex in vivo milieu. To address this, we have developed a protocol that merges traditional immunology infection models with whole-body metabolite infusion and mass-spectrometry-based metabolomic profiling to assess T-cell metabolism in vivo. In this protocol, pathogen-infected mice are infused via the tail vein with an isotopically labeled metabolite (2-6 h), followed by rapid magnetic bead isolation to purify T-cell populations (<1 h) and then stable isotope labeling analysis conducted by mass spectrometry (~1-2 d). This procedure enables researchers to evaluate metabolic substrate utilization into central carbon metabolic pathways (i.e., glycolysis and the tricarboxylic acid cycle) by specific T-cell subpopulations in the context of physiological immune responses in vivo.


Assuntos
Marcação por Isótopo , Metabolômica/métodos , Linfócitos T/metabolismo , Animais , Citometria de Fluxo , Camundongos
10.
Transgenic Res ; 30(3): 283-288, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864193

RESUMO

An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein's status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.


Assuntos
Alérgenos/isolamento & purificação , Produtos Agrícolas/imunologia , Espectrometria de Massas , Plantas Geneticamente Modificadas/imunologia , Alérgenos/efeitos adversos , Alérgenos/imunologia , Produtos Agrícolas/efeitos adversos , Produtos Agrícolas/química , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados/efeitos adversos , Humanos , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/química
11.
Cell Metab ; 32(3): 457-467.e5, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738204

RESUMO

Serum acetate increases upon systemic infection. Acutely, assimilation of acetate expands the capacity of memory CD8+ T cells to produce IFN-γ. Whether acetate modulates memory CD8+ T cell metabolism and function during pathogen re-encounter remains unexplored. Here we show that at sites of infection, high acetate concentrations are being reached, yet memory CD8+ T cells shut down the acetate assimilating enzymes ACSS1 and ACSS2. Acetate, being thus largely excluded from incorporation into cellular metabolic pathways, now had different effects, namely (1) directly activating glutaminase, thereby augmenting glutaminolysis, cellular respiration, and survival, and (2) suppressing TCR-triggered calcium flux, and consequently cell activation and effector cell function. In vivo, high acetate abundance at sites of infection improved pathogen clearance while reducing immunopathology. This indicates that, during different stages of the immune response, the same metabolite-acetate-induces distinct immunometabolic programs within the same cell type.


Assuntos
Acetatos/metabolismo , Anti-Inflamatórios/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Acetatos/sangue , Acetatos/imunologia , Animais , Anti-Inflamatórios/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Sci Rep ; 10(1): 7838, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398698

RESUMO

One-carbon metabolism fuels the high demand of cancer cells for nucleotides and other building blocks needed for increased proliferation. Although inhibitors of this pathway are widely used to treat many cancers, their global impact on anabolic and catabolic processes remains unclear. Using a combination of real-time bioenergetics assays and metabolomics approaches, we investigated the global effects of methotrexate on cellular metabolism. We show that methotrexate treatment increases the intracellular concentration of the metabolite AICAR, resulting in AMPK activation. Methotrexate-induced AMPK activation leads to decreased one-carbon metabolism gene expression and cellular proliferation as well as increased global bioenergetic capacity. The anti-proliferative and pro-respiratory effects of methotrexate are AMPK-dependent, as cells with reduced AMPK activity are less affected by methotrexate treatment. Conversely, the combination of methotrexate with the AMPK activator, phenformin, potentiates its anti-proliferative activity in cancer cells. These data highlight a reciprocal effect of methotrexate on anabolic and catabolic processes and implicate AMPK activation as a metabolic determinant of methotrexate response.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Metotrexato/farmacologia , Transdução de Sinais/efeitos dos fármacos , Biguanidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia
13.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023446

RESUMO

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Assuntos
Encefalomielite Autoimune Experimental , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Metionina , Esclerose Múltipla , Células Th17/metabolismo , Animais , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacologia , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Células Th17/citologia
14.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747582

RESUMO

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Ativação Linfocitária/imunologia , Metaboloma , Metabolômica , Animais , Proliferação de Células , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Metabolômica/métodos , Camundongos , Estresse Oxidativo , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
15.
Nat Immunol ; 20(10): 1311-1321, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527833

RESUMO

Whether screening the metabolic activity of immune cells facilitates discovery of molecular pathology remains unknown. Here we prospectively screened the extracellular acidification rate as a measure of glycolysis and the oxygen consumption rate as a measure of mitochondrial respiration in B cells from patients with primary antibody deficiency. The highest oxygen consumption rate values were detected in three study participants with persistent polyclonal B cell lymphocytosis (PPBL). Exome sequencing identified germline mutations in SDHA, which encodes succinate dehydrogenase subunit A, in all three patients with PPBL. SDHA gain-of-function led to an accumulation of fumarate in PPBL B cells, which engaged the KEAP1-Nrf2 system to drive the transcription of genes encoding inflammatory cytokines. In a single patient trial, blocking the activity of the cytokine interleukin-6 in vivo prevented systemic inflammation and ameliorated clinical disease. Overall, our study has identified pathological mitochondrial retrograde signaling as a disease modifier in primary antibody deficiency.


Assuntos
Linfócitos B/imunologia , Complexo II de Transporte de Elétrons/genética , Inflamação/metabolismo , Linfocitose/imunologia , Mitocôndrias/metabolismo , Mutação/genética , Anti-Inflamatórios/farmacologia , Respiração Celular , Células Cultivadas , Fumaratos/metabolismo , Glicólise , Humanos , Inflamação/genética , Interleucina-6/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio , Estudos Prospectivos , Transdução de Sinais , Sequenciamento do Exoma
16.
Cell Rep ; 27(13): 3902-3915.e6, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242422

RESUMO

Neutrophils are phenotypically heterogeneous and exert either anti- or pro-metastatic functions. We show that cancer-cell-derived G-CSF is necessary, but not sufficient, to mobilize immature low-density neutrophils (iLDNs) that promote liver metastasis. In contrast, mature high-density neutrophils inhibit the formation of liver metastases. Transcriptomic and metabolomic analyses of high- and low-density neutrophils reveal engagement of numerous metabolic pathways specifically in low-density neutrophils. iLDNs exhibit enhanced global bioenergetic capacity, through their ability to engage mitochondrial-dependent ATP production, and remain capable of executing pro-metastatic neutrophil functions, including NETosis, under nutrient-deprived conditions. We demonstrate that NETosis is an important neutrophil function that promotes breast cancer liver metastasis. iLDNs rely on the catabolism of glutamate and proline to support mitochondrial-dependent metabolism in the absence of glucose, which enables sustained NETosis. These data reveal that distinct pro-metastatic neutrophil populations exhibit a high degree of metabolic flexibility, which facilitates the formation of liver metastases.


Assuntos
Neoplasias Hepáticas/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neutrófilos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Neutrófilos/patologia
17.
Cell Rep ; 26(13): 3613-3628.e6, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917316

RESUMO

TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Imunidade Inata , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Resistência à Doença , Imunidade Inata/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Cell Metab ; 28(6): 817-832.e8, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244971

RESUMO

There is increasing interest in therapeutically exploiting metabolic differences between normal and cancer cells. We show that kinase inhibitors (KIs) and biguanides synergistically and selectively target a variety of cancer cells. Synthesis of non-essential amino acids (NEAAs) aspartate, asparagine, and serine, as well as glutamine metabolism, are major determinants of the efficacy of KI/biguanide combinations. The mTORC1/4E-BP axis regulates aspartate, asparagine, and serine synthesis by modulating mRNA translation, while ablation of 4E-BP1/2 substantially decreases sensitivity of breast cancer and melanoma cells to KI/biguanide combinations. Efficacy of the KI/biguanide combinations is also determined by HIF-1α-dependent perturbations in glutamine metabolism, which were observed in VHL-deficient renal cancer cells. This suggests that cancer cells display metabolic plasticity by engaging non-redundant adaptive mechanisms, which allows them to survive therapeutic insults that target cancer metabolism.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Animais , Biguanidas/farmacologia , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células K562 , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Metab ; 28(3): 504-515.e7, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30043753

RESUMO

T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.


Assuntos
Acetil-CoA Carboxilase/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Carnitina O-Palmitoiltransferase/fisiologia , Compostos de Epóxi/farmacologia , Ácidos Graxos/metabolismo , Memória Imunológica/efeitos dos fármacos , Mitocôndrias/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
20.
Nat Commun ; 9(1): 2463, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941886

RESUMO

Dendritic cells (DCs) are first responders of the innate immune system that integrate signals from external stimuli to direct context-specific immune responses. Current models suggest that an active switch from mitochondrial metabolism to glycolysis accompanies DC activation to support the anabolic requirements of DC function. We show that early glycolytic activation is a common program for both strong and weak stimuli, but that weakly activated DCs lack long-term HIF-1α-dependent glycolytic reprogramming and retain mitochondrial oxidative metabolism. Early induction of glycolysis is associated with activation of AKT, TBK, and mTOR, and sustained activation of these pathways is associated with long-term glycolytic reprogramming. We show that inhibition of glycolysis impaired maintenance of elongated cell shape, DC motility, CCR7 oligomerization, and DC migration to draining lymph nodes. Together, our results indicate that early induction of glycolysis occurs independent of pro-inflammatory phenotype, and that glycolysis supports DC migratory ability regardless of mitochondrial bioenergetics.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Glicólise/fisiologia , Fosforilação Oxidativa , Receptores CCR7/metabolismo , Animais , Diferenciação Celular , Forma Celular/fisiologia , Células Dendríticas/fisiologia , Feminino , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...